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Biology’s missing theory

Biology has claim to two theories unto itself: Darwin’s natural selection and
Mendel’s transmission rules. Both are correct, their joint operation can be nicely
formalized, and together they are insufficient to account for the history of life as
we know it.

Consider what is lacking. The formalization of Mendelism and Darwinism, known
as the “Modern Synthesis”, codified the evolutionary process as a problem in the
dynamics of alleles (think genes) governed jointly by fitness (herein Darwinism)
and transmission (herein Mendel) relations [7, 12, 21]. The theory, thus, assumes
the prior existence of the very entities it is meant to explain. Indeed, nowhere
in the formalism appears any representation of the organism. The theory can-
not, therefore, be reasonably expected to account for changes in the features of
organisms (phenotypes), nor for the progression from self-reproducing molecules
to self-maintaining metabolisms?, to modern cells containing organizational ele-
ments that once were autonomous simple cells, to multicellular units with cellular
differentiation, to the entities with cognition that assemble in an auditorium to
talk about this very failing.

! This version derives from a combination of two talks. One was given in Milan on December
15th, 1994, at the conference “The future of science has begun. Approaches to Artificial Life
and Artificial Intelligence” sponsored by the Carlo Erba Foundation. The other was given on
April 19th, 1996, at the University of Chicago on the occasion of the Dean’s Symposium 1996
(Division of the Social Siences) “The Dynamic Emergence of Individuals and Cognition”.
This is joint work with Leo W. Buss, Department of Biology and Department of
Geology and Geophysics, Yale University, New Haven CT 06520-8104 USA.

2or vice versa,



The genius of the crafters of the synthesis was to abstract away the organism
— to see that the synthesis of Darwinism and Mendelism need not await a then
unavailable “theory of the organism”. That theory is still unavailable. Exploring
its grounding is our project.

A representation of chemistry for biology

Any theory of biological organization must be grounded in a representation of that
which organisms are composed of. The theory must be grounded in chemistry.
We may picture chemistry as an informally systematized, autonomous body of
knowledge at the interface between two very different tales of nature, physics and
biology (Figure 1). Chemistry comes, of course, complete with its own theoretical
structure. Quantum mechanics is the theory that nicely knits chemistry into the
fabric of physics.
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Figure 1: Chemistry as a threshold science. Quantum mechan-
ics connects to physics, and sees the trees but not the forest of
chemistry. Couldn’t there be a different, more coarse-grained and
action-focused description suited for understanding how organism
arises from chemistry?

Quantum mechanics, however, is not a useful representation in which to ground
a theory of biological organization. Quantum mechanics is a description that
is oriented “downwards” and “inwards”. Its level of detail puts the focus on
single molecules and individual reactions, away from their context within a large
number of concurrently operating molecules. For biological understanding, we



require something different: an outward, coarse-grained, yet formal point of view
capable of abstracting network relationships between reactions. The “chemistry
for biology” we seek is a high level specification language for abstracting molecular
actions, for plugging them together, and for generating and analyzing the network
closures of these actions under a variety of boundary conditions.

Biological organizations are specialized chemical collectives. Biology’s missing
theory of the organism does not need a theory of chemistry at the level of quantum
mechanics. Rather, it needs a formal representation of chemistry, truthful to
stylized facts, designed to abstract those features of molecules germane to the
origin and alteration of organized molecular collectives.

Chemistry as object construction and equivalence relations

What properties of chemistry do we require for the desired representation for
biology. Consider an idealized chemical situation. In an empty container we mix
two substances, say, methanol and acetic acid. We pass it to a friend, asking
her to verify that it contains two substances. Upon analysis our friend will tell
us that there are four, not two. In a sense we have put two “variables” into the
system, and now need four to describe it. What happened is a chemical reaction.
The chemist expresses the event with the notation:

CH;0H + CH;COOH = CH3;COOCH; + H,0

Read from left to right the “equation” states that two objects - molecules - inter-
act to produce two new objects. What has changed are the objects themselves
and they have done so on the basis of a structure that determines which trans-
formations can occur. Chemistry at the level of the balance equation above is
a matter of object construction upon interaction. This leads to equivalences
between molecular compositions in the sense that many different reactive combi-
nations yield the same product.

There is no mystery in this, but quantum mechanics does not capture chemistry
at this level. In fact, if you go close enough, the molecules don’t exist the way the
chemist writes them down. No one seriously believes that a test tube contains
an alphabet soup with symbol strings such as CH3OH. What exists depends on
how close you get. At some level of resolution the quantitative properties, which
are the stuff of quantum mechanics, start popping up again: a molecule is a
(probability) distribution of mass and charge in space. Yet, no chemist really
uses it in a significant way to plan, say, synthesis of complex compounds like
drugs.

Chemists adopt a subtly different point of view. A chemist views the formulas
he uses to notate his objects in much the same way that a mathematician views



her weird strings of symbols. The strings “[ 22da” or “4 + 3” evidently possess
a structure, yet it makes no sense at all to express this structure in a spatial
coordinate system. To a mathematician’s mind “4 + 3” is a syntactical structure
that stands for an action; an action that yields “7”. Slightly more generally,
“442” stands for an action whose result depends on the nature of “x”. Similarly,
to a chemist’s mind CH3OH is a statement about an action - a chemical action -
that depends on the structure of the other object it interacts with. As a physical
entity, CH3OH does, of course, have a spatial structure specifiable by an array of
coordinates. The chemist, however, sees shape as function. That perspective is
not about positions in space, but rather about relationships. To help codify this
view, chemists have developed a symbolic notation and an elaborate system of
rules to link - more or less sucessfully - the action of molecules to their formulas.

The notion of chemistry in textbooks is an informal one. It is not grounded in
a mathematical or logical framework within which one can discover empirically
verifiable chemical truths by “calculation”. Yet this is what we have claimed that
biology needs in a “theory of the organism”; a formal system that mathematizes
a combinatorial variety of objects (think molecules) capable of specific actions
whose effect is the construction of further objects. At present, we do little more
than point in a (very) broad direction by making a leap of abstraction. Consider,
we need at the very minimum an axiomatic theory with two ingredients: (i) a
grammar to express syntactical structures and (ii) a formal way to connect these
structures with actions on syntactical structures, such that (iii) structures bear
equivalence relations. This is exactly what the concept of computation does.

Computation as object construction and equivalence relations

To appreciate the sense in which “computation” can stand as a rough proxy for
chemistry, one should resist conflating the mathematical concept of “computa-
tion” with the notion of computers chewing numbers. The concept of computa-
tion is subtle. Its key aspect is the refinement of the world into “behavior” and
“that which behaves”. This refinement seems deceptively trivial, but until the
1930s there was no formalization of such a distinction. The prevailing view was to
consider “behavior” as a mathematical function in the sense of one huge (in fact,
infinite) look-up table, which tabulates assignments of outputs to inputs, without
considering the process of how an output is obtained from an input. Incidentally,
the interaction matrix used to specify entities in a traditional dynamical system
corresponds to such a look-up table.

In contrast, the core idea of computation is to compress an infinity of possible
behaviors (the look-up table) into a finite rule describing a process that trans-
forms input to output. What would a system look like that enables us to reason
about such rules? It clearly must have a syntactical component to express these



rules. Rules, thus, are pieces of text (i.e., syntactical objects). By specifying how
to construct them, the syntactical component defines a universe of “well-formed”
possible objects.

So far this is a prescription for syntactical diversity. Since these rules are sup-
posed to be about “actions”, the intuition is that different syntactical objects may
actually “mean the same thing”. Consider two syntactically different structures,
such as 10/2 and 1 + 4 (Figure 2). To establish whether they “mean the same
thing”, something must be done. That “something” consists in structural rear-
rangements of these objects on the basis of schemes defining elementary rewrites
of specific configurations. A sequence of such rearrangements is called a “compu-
tation”. One can think of the objects 10/2 and 144 as “unstable”, because their
structure permits actions - transformations - to occur. In a sense “computation”
is a process by which such structures are stabilized. In the trivial example con-
sidered, both objects, 10/2 and 1+ 4, are transformed under the syntactical laws
of arithmetic into the objects 5 and 5. The latter are identical, and, hence, one
says that 10/2 and 1 + 4 are equal.
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Figure 2: “Computation” is a theory about which object combi-
nations are equivalent.

The first component of a system to reason about rules was a syntax for expressing
their compositional structure. The second component, then, consists in defining
laws that couple this syntax with actions that unfold on the syntax and establish
a notion of sameness. Syntax and action are here but two sides of the same
coin. Action is expressed by syntactical transformations triggered by specific
syntactical configurations, i.e. the syntactical system 4s the theory of action.



Well, but just which action are we talking of? The action that was of interest
to logicians in the early 20th century was that of a function. What exactly does
the action of a function consist in? It depends on how one looks at it. One
approach is to think of a function as a series of recursive “applications” of other
simpler constituent functions. The “application” of a function, A(z), to another,
B(y), is carried out by literally “substituting” for the “variable” x of A(x) the
argument B(y), i.e., A(x := B(y)). The formal system that analyzes the quoted
words - in particular the notion of “substitution” - is known as the A-calculus
[3, 4]. It mirrors the informal usage of functions, except that it makes explicit
all that we take for granted. An interesting aspect is that within A-calculus
everything is a function (including representations of “numbers”), and so there
is no syntactical distinction between a function and the argument(s) it is applied
to. Any object can be in either role. We skip further details, as they are not
necessary to understand what follows at the “big picture” level.

A first order approzimation: Chemistry as a calculus

The perspective of computation just sketched is a theory of action defined on
the compositional structure of objects. This, we conjecture, is “chemistry” in
a nutshell. It corresponds to the way chemists use the notation they have de-
veloped. Molecules are stable syntactical objects representing a specific range
of possible actions. New “unstable” molecules - so-called “transition states” -
are constructed by combining stable molecules when they collide. The molecu-
lar transition structures undergo syntactical rearrangements into stable product
molecules. This corresponds to “computation” (i.e., the evaluation of a function
applied to an argument). Different reactive combinations may yield the same
product. This corresponds to the concept of “sameness” introduced above. The
emphasis here is on abstracting just these two characteristics, construction and
sameness, claiming that whatever deserves the label “chemistry” cannot be with-
out them. Obviously, a number of familiar and important features of chemistry
do not appear at all, or at best schematically, in this picture. This chemistry
is clearly not what is captured by quantum mechanics at the lower interface in
Figure 1. Yet, it is also far from a respectful projection of chemistry on the upper
interface in Figure 1. We believe, however, that this approach broadly outlines
the spirit of a “theoretical chemistry” that has yet to be invented.

For now we have with A-calculus a simple off-the-shelf formalism that is remark-
ably well-suited to implement and to study the consequences of a first metaphor?:

3In the following we will use “function” and “operator” synonymously.



chemistry ------ a calculus (A-calculus)
physical molecule ------ expression representing an operator
molecule’s behavior ------ operator’s action
chemical reaction ------ evaluation of functional application

Having metaphorized chemical objects into abstract computational entities, we
need to recover some of the physical context. Again, we stay minimal. Our
interest is in overlaying this calculus/chemistry with a simple kinetics (i.e., a
dynamical system). To explore this we turn to computer experiments. Our
ultimate goal is a mathematical account, but we first need to know what to look
for, and so we proceed in the spirit of an experimental mathematics.

reactor

add

transform into
{K normal form

Figure 3: A-calculus flow reactor. Two expressions A and B are
chosen at random and an object, (A)B, is constructed by “appli-
cation”. Restructuring (A)B into normal form (“computation”)
yields the new stable object.

The setting we chose is what chemists call a flow-reactor. It is a well stirred
box in which we place a few thousand randomly generated A-operators. We
consider, thus, a situation in which each operator acts in a context of others.
Operators can occur in multiple instances. As for molecular species, we have a



notion of concentration. We now think of these operators as floating around in
the box where they collide at random. Upon collision one operator is applied to
the other. The resulting A-expression is obtained according to the rules of the
calculus which stand as a proxy for the “laws of chemical transformation”. The
result is a new operator that is fed back to the system. In this way we implement
a simple chemical kinetics, where two object species interact with a probability
proportional to their concentration.

Our metaphor does obvious violence to the chemistry we know. We briefly return
to this point in conclusion. One problem, however, needs to be mentioned now.
In a calculus, the application of an operator to another produces a single result,
rather than two or more. Thus, a key feature of many chemical interactions - the
feature of producing multiple products in a single event - is not realized. This
doesn’t jeopardize our exploration of the consequences of joining construction
with dynamics. It only means that the dynamical systems component has to be
artificially constrained. We do so by not using up the operators immediately at
the moment of the reaction, as it would be the case in chemistry. To compensate
for keeping the reactants, we introduce a dilution flow by removing one randomly
chosen object from the system each time an interaction has happened. This
means that every object has effectively a finite lifetime. No operator will persist
over a long period of time, unless it is somehow produced by interactions among
extant operators. This is schematically summarized in Figure 3.

In the first phases of its history, the system is highly innovative in the sense that
almost every interaction produces an operator that is new to the box. The system
starts “moving in object space”. We leave it moving, and analyze its content after
hundreds of thousands of collisions have occurred.

Level 0

At first something rather disappointing happens. We find that all operators are
of the same kind. It is easy to find out what this kind of operator does: it
performs an identity operation on itself. It copies itself, and, therefore, behaves
kinetically like a replicator. More complicated instances also occur, such as small
hypercycles of functions that mutually copy one another. The hypercycle is a
coupling structure invented by Eigen and Schuster [5], to which a key role in the
early stages of prebiotic molecular evolution is imputed.

Thus, without further boundary conditions the reactor settles on ensembles of
operators, each of which is the fixed point of the interaction with some other
operator in the same ensemble. In the case illustrated in Figure 4 no interaction
generates products that are not already in the system. The set of objects has
become closed with respect to interaction. Under such circumstances we can
describe the system without reference to the interal structure of the constituent
objects. All that we need are three concentration variables and their couplings



(i.e., who interacts with whom to produce whom). When convergence in object
space has occurred, the system has become a conventional dynamical system?.

Figure 4: A simple three membered hypercycle of A-expressions.

Level 1

The system permits to test the consequences of constraints on the action of
the operators. For example, we can prohibit all identity actions, thus outright
barring replicators from the system. Whenever two operators interact to produce
an operator that is syntactically identical to one of them, the collision is declared
“elastic”, that is to say: nothing happens. The analysis reveals a quite different
picture from the previous case. Only those main points are sketched that are
common to the outcomes of all experiments.

1. The box contains a large diversity of operators, a substantial fraction of
which is engaged in a self-maintaining network of mutual production path-
ways. Like before, we see a fixed-point behavior in object space. This time,
however, not at the level of a single operator, but at the level of a collective.

2. At the syntactical level there exist common regularities that characterize
the structures of all operators maintained in the system. These regularities
define a grammar, i.e., lawful arrangements of identifiable substructures.
The grammar is characteristic for the ensemble and defines a subspace of
A-calculus. Furthermore, when new operators are created from interactions
within the system, their structure conforms with the grammar. That is
to say, the subspace specified by the grammar is invariant as interactions
proceed; closure has been attained.

4Notice that this object-less description breaks down, as soon as we perturb the system by
injecting a new object...



3. A few laws specify all relationships of transformation among operators
whose structure conforms with the grammar. These laws constitute an
abstract algebra. The algebraic laws can be read as a A-calculus indepen-
dent definition of the action associated with the building blocks on which
the grammar is defined. Grammar and laws remain invariant. They provide
a complete, yet A-calculus independent, level of description of the system.

~.
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h

Figure 5: A simple self-maintaining organization. The dots (left)
and the squares (right) represent two families of A-expressions with
a particular grammatical structure (whose details are omitted). A
solid arrow indicates the transformation of an argument (tail) to
a result (tip) by an operator (dotted arrow). For clarity, only
a subset of the possible interrelations is shown. Notice the con-
nectivity enables kinetic confinement. Most transformations yield
objects at the bottom (leading to an increasing concentration pro-
file from top to bottom). Some operations, however, yield objects
up the “ladder”, thus establishing self-maintenance. Both syntac-
tical families depend on each other for maintenance as indicated

by the “cross-family” connections.

These properties make the system one single object in its own right. It is an
object of an alltogether different class than its components. We call such an
invariant entity an organization. Figure 5 illustrates the main points of an actual
example. The individual components of this entity are constantly being turned-

over®. That which persists over time is something abstract: the grammar and

SWhen replicators also entertain constructive interactions, we sometimes find that the con-
tents of the flow reactor keep changing indefinitely, thus violating property (1), while properties
(2) and (3) remain valid. An example is discussed in [8].
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the algebraic laws. They allow to decide whether a given arbitrary operator-
particle taken from our formal chemical universe belongs to the organization
or not. Grammar and algebra constitute a boundary of the new object. This
boundary delimits the organization in the abstract object space, not in physical
space. An organization is an object made of components that are held together
on the basis of specific invariant relationships of transformation. This does not
suffice to separate different instances of the same organization. Some form of
physical space seems to be required to encapsulate an organization, but physical
space is clearly not required to bound it.

The main take-home at this point is a useful definition of what we mean by
an “organization”: a kinetically self-maintaining algebraic structure. Such alge-
bras are generated spontaneously in this model. The link with algebra allows
to clarify some noteworthy stability properties of organizations. They turn out
to be extremely robust with respect to both the subtraction and the addition of
operators, but for different reasons.

When removing large portions of an organization, it repairs itself. Some organi-
zations are even undestructible: they regenerate themselves from any component-
operator. The reason for this robustness with respect to subtraction is the ex-
istence of generator sets of the underlying algebra. These are sets of operators
whose iterated interactions rebuild step by step the population of operators that
carry the organization.

Consider the addition of operators. The integration of an operator that is not
a member of a given organization requires the organization to change. The or-
ganization must stably sustain the pathways necessary for the maintenance of
the perturbing operator, otherwise it will be removed by the dilution flow. These
pathways involve direct and indirect products generated by the perturbing agent’s
actions within the organization. Organizations are very resilient to the addition
of new operators. However, when they change, they change in a characteris-
tic way. The original unperturbed organization is conserved, and “on top” of
it a further layer of pathways is added. This layer implies the addition of new
grammatical elements and algebraic laws without undoing the original. This is
exactly what is known as an algebraic extension. It is clear that the relationships
of transformation that hold between the operators of an organization severly con-
strain its variation and possible extensions. At present we don’t understand these
constraints in any systematic way.

Level 2

Self-maintaining organizations can be combined. In some cases they do not drive
each other out of existence, but they coexist stably. This coexistence is struc-
tural. Cross-interactions between members of different organizations produce
new operators that belong to neither organization. These operators and their in-
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teractions constitute a “glue” that integrates both self-maintaining organizations
into a higher order unit, where they continue to persist as autonomous entities
(Figure 6).
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Figure 6: A cartoon of a Level-2 situation. Two autonomous self-
maintaining organizations are “glued” together within a higher
order organization by the products of their “cross-talk”. If one
of the component organizations disappears, so does the glue. If
many organizations were put together, what do you think would
happen?

Concluding remarks

There are two ways of looking at chemistry, which reflect its threshold position
between physics and biology. From the vantage point of physics, molecules appear
as nuclear and electronic distributions in space, governed by electromagnetic
interactions. This view emphasizes a molecule as a many-body dynamical system.
It succeeds (at least in principle) in deriving its quantitative properties, such
as spectra, bond lengths and angles. In contrast, from the vantage point of
molecular biology, molecules appear as units of syntactical action tied together
into organized networks of transformations. This view emphasizes a molecule as
a functional entity to which a “semantics” can be attributed on the basis of its
relations within a context of other molecules.

The conceptual gap between the two views is worth noting. The physics point
of view offers a formal theory, yet its focus on quantitative aspects puts it so
close to (into?) individual molecules as to lose the view of molecules as carriers
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of transformation relations that can be plugged together into systems. In fact, it
is the latter view that the bulk of informally codified chemical knowledge used
in laboratories is about. The loss of formality constitutes no more a problem for
the everyday practice of chemistry, as a growing number of laws and amendments
does for the practice of lawyers. Yet, one is left wondering what kind of theory, if
any, is going to integrate the findings of molecular biology on a formal platform.
An answer to the question “what is life?” may perhaps depend on how we answer
the question “what is chemistry?”. If we don’t frame the basic constituents of
life in the “appropriate” way, how are we going to frame their most interesting
collective property?

The stance taken in Leo Buss’ and my approach is to view molecules as compo-
sitional objects capable of constructive interactions. The foundations of compu-
tation offer a theory of such objects. In a very first round this stance amounts
to treating molecules as if they were symbolic functions expressed in a canonical
calculus. The calculus of choice is A-calculus. Our intent is not to produce an
arbitrary toy chemistry, but rather to produce a valid abstraction of chemistry.
In the end this means a formal translation between chemical syntax and a syntax
of computation. New axiomatic systems may have to be invented for this pur-
pose. For now we find it surprising that among the available formalizations of
computation there is such a central one that fits the ontology of chemistry at all.

The results of our work even suggest that with respect to biological applications it
is not necessary to succeed in a truthful translation of actual chemistry. The crude
approximation achieved by simply placing A-calculus in a constrained dynamical
setting already yields a highly useful notion of functional organization as a special
class of fixed points with respect to an endogenous “motion in object space”. The
abstract organizations generated within our system exhibit properties, such as
regeneration, structure-dependent extension and capacity for hierarchical nesting
that are akin to those of living organisms. To illuminate the mathematical nature
of organized molecular collectives, it suffices, as a first step, to succeed in a proper
abstraction of chemical concepts (rather than in producing a homomorphism to
chemical reality).

There is no doubt that A-expressions are far from molecules and our organizations
far from organisms. The extent to which chemical realism can be increased with-
out giving up formalism will determine which further properties of concurrent
chemical organization become amenable to theory. The major limitations of the
present abstraction are the absence of selective interactions (i.e., some notion of
“steric constraints”), mass-action or stoichiometry, rate constants and the viola-
tion of interaction symmetry (functional application being not commutative), to
mention but a few. In the attempt of incorporating interaction specificity (i.e.,
“shape”) at a formal level, we have recently refined our metaphor to A-calculus
with a type system. Once having arrived at typed A-calculus, it is almost in-
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evitable to proceed further to proof-theory. This stance leads one to view a
chemical action as a logical proposition and a molecule capable of that action as
a proof of that proposition. Chemical reactions, then, appear as rules of inference
(such as “cut” or “modus ponens”), with reactants as hypotheses and products
as conclusions. While still falling short of chemistry in detail, we begin to see
how the connections with recently developed proof-systems (e.g., linear logic [11])
enable us to address each of the limitations mentioned. Formal logic, it seems, is
more appropriate for capturing chemistry than human cognition and reasoning.
For an interim report the reader may consult [10].

Further reading

Related work that provided important motivation has been published by Bagley,
Farmer, Kauffman, Packard and Rasmussen [1, 6, 13, 14, 18], in particular Kauff-
man’s pioneering work on reflexively autocatalytic chemical collectives. Maturana
and Varela’s concept of “autopoiesis” [15, 16, 17, 19, 20] is of particular relevance.
Leo Buss’ classic [2] was the driving force to go beyond standard formal frame-
works in evolutionary biology to address the issue of organization. Our joint work
is reported in [8, 9, 10].

Acknowledgement: Thanks to Leo Buss for ironing and starching this text.
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