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SYNOPSIS

RNA folding from sequences into secondary structures is a simple yet powerful,
biophysically grounded model of a genotype-phenotype map in which concepts
like plasticity, evolvability, epistasis and modularity not only can be precisely de-
fined and statistically measured, but reveal simultaneous and profoundly non-
independent effects of natural selection. Molecular plasticity is viewed here as
the capacity of an RNA sequence to assume a variety of energetically favorable
shapes by equilibrating among them at constant temperature. Through simula-
tions based on experimental designs, we study the dynamics of a population of
RNA molecules that evolve towards a predefined target shape in a constant en-
vironment. Each shape in the plastic repertoire of a sequence contributes to the
overall fitness of the sequence in proportion to the time the sequence spends in that
shape. Plasticity is costly, since the more shapes a sequence can assume, the less
time it spends in any one of them. Unsurprisingly, selection leads to a reduction of
plasticity (environmental canalization). The most striking observation, however,
is the simultaneous slow-down and eventual halting of the evolutionary process.
The reduction of plasticity entails genetic canalization, that is, a dramatic loss of
variability (and hence a loss of evolvability) to the point of lock-in. The causal
bridge between environmental canalization and genetic canalization is provided by
a correlation between the set of shapes in the plastic repertoire of a sequence and
the set of dominant (minimum free energy) shapes in its genetic neighborhood.
This statistical property of the RNA genotype-phenotype map, which we call plas-
togenetic congruence, traps populations in regions where most genetic variation is
phenotypically neutral. We call this phenomenon neutral confinement. Analyti-
cal models of neutral confinement, made tractable by the assumption of perfect
plastogenetic congruence, formally connect mutation rate, the topography of phe-
notype space and evolvability. These models identify three mutational regimes:
that corresponding to neutral confinement, an exploration threshold correspond-
ing to a break-down of neutral confinement with the simultaneous persistence of
the dominant phenotype, and a classic error threshold corresponding to the loss
of the dominant phenotype. In a final step, we analyze the structural properties
of canalized phenotypes. The reduction of plasticity leads to extreme modularity,
which we analyze from several perspectives: thermophysical (melting – the RNA
version of a norm of reaction), kinetic (folding pathways – the RNA version of
development), and genetic (transposability – the insensitivity to genetic context).
The model thereby suggests a possible evolutionary origin of modularity as a side
effect of environmental canalization.
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1 INTRODUCTION

Biological evolution is the transformation of heritable phenotypes through
time. Evolution is fueled by the introduction of novel phenotypes, and steered
by population-level interactions including natural selection and genetic drift.
The predominant route to heritable phenotypic change originates with ge-
netic mutation. The processes that translate genetic variation into pheno-
typic variation give rise to an association betweeen genotype and phenotype
which we represent as a map that is sensitive to environmental conditions.
Concepts such as canalization, epistasis and modularity underlie our under-
standing of phenotypic variability (for a sweeping perspective see Wagner
and Altenberg (1996) and Schlichting and Pigliucci (1998)). Yet, a micro-
foundation of these concepts and of their interconnections in terms of the
relation between genotype and phenotype is largely missing. Our goal here
is to initiate such a foundation in the specific context of a conceptually, com-
putationally and empirically simple yet powerful genotype-phenotype model
based on the folding of RNA sequences (genotypes) into shapes (phenotypes).

RNA folding seems, at first, unlikely to be able to address canalization,
epistasis and modularity. Although we shall mostly use language appropriate
for RNA, an RNA sequence could be viewed as a metaphor for a genome, and
a position along the sequence as a metaphor for a locus with four possible
alleles (nucleotides). A phenotype (RNA shape) then is a simple pattern of
gene-gene interactions (base pairs, see section 2.2). Since this paper weaves
together several seemingly diverse concepts, we begin with an overview.

Our study provides a molecular illustration for the Simpson-Baldwin effect
(Baldwin, 1896; Simpson, 1953; Ancel, 1999a) using RNA as an example.
Central to the initial “discovery” stage of the Simpson-Baldwin effect is phe-
notypic plasticity, that is, the genetically influenced capacity of an individual
to develop into one among a range of phenotypes. In an evolutionary con-
text, a fixed environment will convey a selective advantage to those individ-
uals that can access an improved phenotype within their plastic repertoire
over those who cannot. The “assimilation” stage of the Simpson-Baldwin
effect arises from the fitness costs of plasticity. Among the individuals se-
lected in the first stage, those that can still access the improved phenotype
while reducing their range of phenotypic plasticity will have a selective ad-
vantage. The Simpson-Baldwin effect describes the genetic determination
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of a phenotype that previously seemed to be acquired anew in each gener-
ation. A frequently considered mechanism of plasticity is learning (Hinton
and Nowlan, 1987; Maynard-Smith, 1987).

Although molecules do not learn, biopolymers like RNA are plastic in the
sense that a given sequence can realize a repertoire of alternative structures,
rather than being frozen in its minimum free energy configuration (section
2). An RNA sequence samples a variety of energetically low lying struc-
tures by wiggling among them under thermal fluctuation. The overall time
a sequence spends in a shape reflects the thermodynamic stability of that
shape. Consider now a population of replicating and mutating RNA se-
quences that are subject to selection for structural proximity to a constant
target shape (section 3). Assume further that each shape attainable by a
sequence contributes to that sequence’s overall fitness in proportion to the
time the sequence spends in it.

Sequences with an advantageous but energetically suboptimal shape will be
selected over those that lack that shape. Plasticity entails a fitness cost
because the more alternative shapes an RNA molecule can fold into, the
less time it will spend in each one. Sequences with an advantageous but
energetically suboptimal shape σ will therefore be replaced by mutants with
σ at lower free energy until σ becomes the minimum free energy structure.
Subsequently, natural selection will fine tune the thermodynamic stability of
σ by favoring variants with few alternative structures in the energetic vicinity
of σ. We show that in our RNA model such genetic assimilation occurs
extremely rapidly and covers several orders of magnitude in thermodynamic
stability (section 3).

Some models link plasticity to a speed-up in evolution (Hinton and Nowlan,
1987). This is not the case in our RNA model. In fact, the reduction of
plasticity in a constant environment leads to a slow down of evolution to the
point of a phenotypic dead-end. In section 3 we describe this dynamic, and in
section 4 we offer an explanation for this behavior in terms of features that
are intrinsic to the RNA genotype-phenotype map. Several threads come
together as we argue that genetic assimilation (the reduction of plasticity)
requires a genotype-phenotype map in which plasticity mirrors variability.
In other words, the shapes appearing in a sequence’s repertoire of energeti-
cally favorable structures correlate significantly to the minimum free energy
structures of the one-error mutants of that sequence. This turns out to be a
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general property of the RNA genotype-phenotype map (section 4). We call
this phenomenon plastogenetic congruence.

Phenotypic variability describes the extent of phenotypic variation accessible
to a genotype through mutation. The evolvability of an individual is the
likelihood of reaching a phenotype with improved fitness through mutation
(Altenberg, 1995). As such, evolvability is linked to variability via the fitness
function. Plasticity, on the other hand, captures the phenotypic variation
at a fixed genotype, typically induced by environmental heterogeneity. In
this sense, the impacts of the environment on plasticity are analogous to
those of mutation on genetic variability. Plastogenetic congruence means that
plasticity and variability mirror each other: low plasticity (that is, strong
genetic determination) implies low variability (that is, strong mutational
buffering), and vice versa.

Plastogenetic congruence implies that an evolutionary reduction of plasticity
has a flip side: a decline in variability. This duality results in a self-defeating
process in which the loss of plasticity through natural selection leads to the
loss of phenotypic variability, to the extent of evolutionary lock-in.

Plastogenetic congruence also sheds light on Waddington’s theories for the
evolution of organismal development (Waddington, 1957). He introduced two
modes of evolution: environmental canalization is the honing of developmen-
tal pathways to reduce environmental noise, and genetic canalization is the
integration of genetic factors to reduce the deleterious effects of mutation.
Under plastogenetic congruence then, genetic canalization will ensue as a by-
product of selection for environmental canalization. This yields a mechanistic
explanation of a hypothesis put forward by Wagner et al. (1997).

Pairwise epistasis is the influence that an alteration of gene i has on the
phenotypic consequences of a subsequent alteration of gene j (Wagner et al.,
1998). This definition of epistasis captures the genetic control of variabil-
ity. In RNA, low plasticity coincides with low variability, maintained by
the fixation of epistatic interactions that buffer the phenotype against mu-
tations. Remarkably, epistatic interactions in RNA can eliminate variability
almost completely. This phenomenon, which we call neutral confinement,
contributes to the evolutionary lock-in mentioned earlier.

Analytical models built on a stylized version of plastogenetic congruence
predict that, for certain parameter regimes, the mutation rate needed to
escape this exploration catastrophe is so high as to result in the loss of the
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dominant phenotype (error catastrophe). We discuss this issue in sections 4
and 5.

The RNA folding genotype-phenotype map enables not only an exploration
of evolutionary dynamics but also a characterization of the morphological
endpoints of evolution. In section 6 we compare three classes of sequences
that share the same dominant (that is, minimum free energy) structure.
One set is derived from a random sample of sequences with the given domi-
nant structure, another set has evolved on a neutral network, and the third
set results from genetic assimilation under the plastic genotpye-phenotype
map. The characteristic which best distinguishes among the three classes
is modularity. We study modularity of shape characters from a variety of
perspectives, all contributing to a definition and quantification of modular
traits as “transposable characters” that maintain their structural integrity
in different sequence and environmental contexts. Although the three classes
share the same minimum free energy structure, that structure is not even
remotely modular on the random sequences, while it is extremely modular
on sequences that have experienced genetic assimilation.

Genetic assimilation leaves us with sequences that possess modular shapes
and are at the same time evolutionarily locked in. This seems to contradict
the hypothesized evolutionary advantage of modularity: modularity parti-
tions quantitative traits into independently and easily evolvable units (Wag-
ner and Altenberg, 1996). While modularity may indeed facilitate the quan-
titative polishing of a trait, it leads to an evolutionary lock-in with respect
to significant structural modifications of that trait. Resistance to structural
change is the hallmark of a module. As many scholars have suggested, the
generation of further evolutionary novelty (or plasticity) then may shift from
locked-in modules to the combinatorial arrangement of modules into new
units.

2 RNA FOLDING AS A GENOTYPE-PHENOTYPE MAP

2.1 Why RNA?

RNA combines genotype and phenotype into a single molecule. This makes
RNA folding in many respects a limited, but also a simple model of a
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genotype-phenotype map (section 2). As a model system, RNA has the ad-
vantages of both computational tractability (Waterman, 1995) and suitability
as a substrate for test tube evolution experiments (Joyce, 1989; Landweber,
1999). The RNA sequence-structure relation also occupies a rare intermedi-
ate level of abstraction bridging the empirical and the formal. RNA folding
algorithms are sufficiently realistic for computational discoveries to suggest
worthwhile empirical investigations. At the same time, the RNA structures
are sufficiently abstract for these discoveries to provide insight and to sug-
gest axioms for the construction of simplified models that are analytically
tractable.

2.2 Secondary structure

RNA molecules are heteropolymers of (predominantly) four units called ri-
bonucleotides. Ribonucleotides have a ribose phosphate in common, but
differ in the base attached to the sugar. The essence of an RNA sequence is
therefore captured by a string over a four letter alphabet, each letter repre-
senting a particular base - A for adenine, U for uracil, C for cytosine, and G
for guanine. Hydrogen bonds give rise to stereoselective recognition between
certain base pairs, specifically A·U and G·C. This base pairing enables an
RNA sequence to be copied into a negative and back again into a positive.
The pairing is not always exact. Error rates depend on the molecular ma-
chinery that assists in pairing and ligating the bases. For example, the per
nucleotide error rate is 7 · 10−5 − 2.7 · 10−4 for Influenza and 3 · 10−4 for
Coliphage Qβ (Eigen et al., 1989). In this way, base pairing enables hered-
ity in RNA viruses. We therefore treat an RNA sequence as a genotype.
The same base pairing mechanism, however, also enables segments of a se-
quence to pair with other segments within the same sequence, causing it to
fold back on itself into a three-dimensional structure. (For the formation of
an intramolecular structure G·U is also an admissible pair.) This structure
conveys chemical behavior to the sequence and constitutes its phenotype.

The rapid replication time and simplicity of the phenotype make RNA a
tractable laboratory model. RNA molecules can be evolved in the test tube
using a variety of techniques for amplification, variation and selection. Evo-
lutionary optimization of RNA properties in the test tube occurs readily and
effectively (Mills et al., 1967; Spiegelman, 1971; Ellington and Szostak, 1990;
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Tuerk and Gold, 1990; Beaudry and Joyce, 1992; Bartel and Szostak, 1993;
Ellington, 1994; Ekland et al., 1995; Landweber and Pokrovskaya, 1999). For
a recent review see Landweber (1999).

Molecular structure in RNA can be characterized at many levels of resolution.
One empirically well-established notion is the secondary structure, which is
the topology of binary contacts as they result from base pairing (Figure
1). The secondary structure is a useful abstraction, since the pattern of
base pairs provides both a geometric and thermodynamic scaffold for the
tertiary structure of the molecule. This puts the secondary structure in
correspondence with some functional properties of the tertiary structure.

hairpin loop

bulge

multiloop

internal loop

internal loop

hairpin loop

hairpin loop

stack or helix
external bases

structural component

structural component

  



Figure 1: An RNA secondary structure graph. A secondary structure is a
graph consisting of structural elements called cycles or loops: a hairpin loop occurs
when one base pair encloses a number of unpaired positions, a stack consists in two
base pairs with no unpaired positions, while an interior loop has two base pairs
enclosing unpaired positions. An internal loop is called a bulge, if either side has
no unpaired positions. Finally, multiloops are loops delimited by more than two
base pairs. A position that does not belong to any loop type is called external,
such as free ends or joints. Components are shape features delimited by external
bases.
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A secondary structure on a sequence of length n can be represented as a graph
of base pair contacts (Figure 1). The nodes of the graph stand for bases at po-
sitions i = 1, . . . , n along the sequence. The set of edges includes the unspe-
cific covalent backbone connecting node i with node i+1, for i = 1, . . . , n−1,
and those indicating pairings between non-adjacent positions. The set of such
non-adjacent pairings P has to satisfy two conditions: (i) every edge in P
connects a node to at most one other node, and (ii) if both i · j and k · l are in
P , then i < k < j implies that i < l < j. Failure to meet condition (ii) results
in pseudoknots which are interactions that belong to the next - the tertiary
- level of structure. Both conditions distinguish RNA structure from protein
structure, in particular condition (i) which builds RNA secondary structure
exclusively from binary contacts. We use a picture of the graph (Figure
1) as the visually most immediate representation of a secondary structure.
We sometimes use a more convenient line oriented representation of nested
parentheses, such as “((((.(((...))).(((...))).))))”, in which a dot
stands for an unpaired position, and a pair of matching parentheses indi-
cates positions that pair with one another.

The elements of a secondary structure graph are certain types of cycles or
loops, see Figure 1. Two contiguous base pairs constitute the smallest loop.
We make the reasonable assumption that the overall energy of a secondary
structure is the sum of its loop energies. These have been measured and tab-
ulated (Freier et al., 1986; Turner et al., 1988; Jaeger et al., 1989; He et al.,
1991) as a function of loop size and delimiting base pairs. A stack of base
pairs – a double-stranded region of several contiguous base pairs – is the ma-
jor stabilizing element. The formation of an energetically favorable stacking
region, however, implies the formation of an energetically unfavorable loop
constraining unpaired bases (for example, a hairpin loop). This “frustrated”
energetics leads to a vast combinatorics of stack and loop arrangements con-
stituting the structural repertoire of an individual RNA sequence. RNA is
an excellent model system for sequence-structure relations in biopolymers
precisely because of our ability to rapidly compute the set of all structures
realized by a sequence. In particular, we use dynamic programming to com-
pute the minimum free energy secondary structure and statistical mechanics
quantities, such as the partition function (Nussinov et al., 1978; Waterman
and Smith, 1978; Nussinov and Jacobson, 1980; Zuker and Stiegler, 1981;
Zuker and Sankoff, 1984; McCaskill, 1990). The work in this paper makes
use of the Vienna RNA folding package (Hofacker et al., 1994-1998), a state-
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of-the-art library of utilities and RNA folding programs routinely applied in
the laboratory.

2.3 Robust properties of RNA folding

RNA folding algorithms vary considerably in the accuracy of secondary struc-
ture prediction for individual instances (Huynen et al., 1997). Our main
concern, however, is with statistical properties of the sequence to structure
map as a whole, rather than with specific cases. We review two statistical
descriptions of the RNA folding map: typical shapes and neutral networks
(Fontana et al., 1993a,b; Schuster et al., 1994; Grüner et al., 1996a,b).

Sequence space and shape space are both very high dimensional, and the
sequence space is substantially larger than the shape space. Analytical tools
developed in Stein and Waterman (1978) yield an upper bound of only Sn =
1.48 × n−3/2(1.85)n shapes vis à vis 4n sequences, where n is the sequence
length (Hofacker et al., 1999). The mapping from sequences to minimum free
energy shapes is significantly many-to-one.

Typical shapes. Relatively few shapes are realized with very high frequency,
contrasting many rarely occurring shapes. More precisely, as sequence length
goes to infinity, the fraction of such “typical shapes” tends to zero (their
number grows nevertheless exponentially), while the fraction of sequences
folding into them tends to one. Consider a numerical example: In the space
of GC-only sequences of length n = 30, 1.07×109 sequences fold into 218, 820
shapes. 22, 718 shapes (10.4%) are typical in the sense of being formed more
frequently than the average number of sequences per shape. 93.4% of all
sequences fold into these 10.4% shapes (Grüner et al., 1996a,b; Schuster,
1997).

Neutrality and neutral networks . Many sequences have the same (typical)
shape α as their minimum free energy structure. We call such sequences
“neutral” with respect to α. A structure α thereby identifies an equivalence
class of sequences. A one-error mutant of a sequence that shares the same
minimum free energy structure as that sequence is called a “neutral neigh-
bor”. By “neutrality” of a sequence we mean the fraction of its 3n one-error
mutants that are neutral neighbors. This notion of neutrality pertains to
the minimum free energy structures of RNA sequences, and should not be
confused with fitness-based neutrality.
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Any given sequence has a significant fraction of neutral neighbors, and the
same holds for these neighbors. In this way, jumping from neighbor to neigh-
bor, we can map an extensive mutationally connected network of sequences
that fold into the same minimum free energy structure (Schuster et al., 1994;
Reidys et al., 1997). We termed such networks “neutral networks” (Schuster
et al., 1994). The ability to change a sequence while preserving the pheno-
type is critical for evolutionary dynamics. The role of neutrality has been
typically viewed as a conservative one, buffering the phenotypic effects of
mutations. Neutrality, however, also enables phenotypic change, because it
permits phenotypically silent mutations to pave the way for phenotypically
consequential mutations.

The boundary of a neutral network is the set of sequences that differ by one
mutation from a sequence in the network, but are not themselves contained
in the network. Transitions between structures are transitions between ad-
jacent neutral networks. This suggests a measure of nearness between RNA
structures based on the fraction of common boundary shared between their
corresponding networks in sequence space (Fontana and Schuster, 1998a,b),
rather than on shape similarity. RNA shape space is then organized by
an (evolutionary) accessibility relation based on the adjacency of neutral
networks in genotype space. Such a topology enables a formal definition
of continuous and discontinuous phenotypic change independently of fitness
criteria (Fontana and Schuster, 1998a). Figure 2 describes the RNA shape
transformations that are discontinuous in this accessibility sense.

2.4 Plasticity in RNA

Plasticity is the genetic determination of a range of phenotypic possibilities,
where the realized phenotype depends on the environmental context of the
organism. If the environment is relatively consistent or the trait is fixed in
development, then plasticity may only be evident over several generations.
In other cases, a plastic individual may change phenotypes during its lifetime
through learning or by reacting to environmental stimuli. For a single RNA
molecule, unspecific contact with a heat bath triggers transitions between
molecular configurations, provided the energy barriers between configura-
tions are sufficiently low. The range of configurations realized by an RNA
molecule at a constant temperature depends on the energies of the configu-
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shifts and generalized shifts:

Figure 2: Continuous and discontinuous RNA shape transformations.
The figure illustrates transformations between RNA secondary structure motifs.
Solid (dashed) arrows indicate continuous (discontinuous) transformations in the
topology of Fontana and Schuster (1998b). Three groups of transformations are
shown. Top: the loss and formation of a base pair adjacent to a stack are both
continuous. Middle: the opening of a constrained stack (e.g. closing a multiloop)
is continuous, while its creation is discontinuous. This reflects the fact that the
formation of a long stack upon mutation of a single position is a highly improbable
event, whereas the unzipping of a random stack is likely to occur as soon as a
mutation blocks one of its base pairs. Bottom: generalized shifts are discontinuous
transformations in which one or both strands of a stack slide past one another,
ending up with or without an overlap. Accordingly, generalized shifts are divided
into the four classes shown.
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rations. The kinetic process of folding into the minimum free energy config-
uration is the RNA analogue of development. Random transitions between
kinetically accessible structures that are energetically close to the minimum
free energy configuration are an unavoidable consequence of the stochasticity
of molecular motion, akin to “developmental noise”.

A microscopic kinetic folding model for RNA has been developed recently
(Flamm et al., 1999), but at present it is too involved for the goals of this
paper. Instead, we exploit an extension of the standard thermodynamic
minimum free energy folding algorithm which permits the computation of
all secondary structures within some energy range above the minimum free
energy (Wuchty et al., 1999). This suboptimal folding algorithm yields fast
access to the low energy portion of the secondary structure space of a given
sequence. We neglect energy barriers and assume that a sequence equili-
brates among all structures whose free energy is within 5kT from the mini-
mum free energy configuration. The 5kT choice amounts to approximately
3 kcal at 37◦ C, and corresponds to the loss of two G·C/C·G stacking in-
teractions. Under thermodynamic equilibration, the Boltzmann probabil-
ity of a structure σ, exp(−∆Gσ/kT )/Z, corresponds to the overall fraction
of time that the molecule spends in σ, where ∆Gσ is the free energy of
structure σ, k is the Boltzmann constant, T the absolute temperature, and
Z =

∑
τ exp(−∆Gτ/kT ) the partition function. The latter is computed by

an algorithm described in McCaskill (1990).

This defines a genotype-phenotype map that takes a sequence to a set of
structures and their occupation times. We shall refer to this map as the
“plastic map”, to distinguish it from the “simple map” where a sequence is
associated with its minimum free energy structure only (Figure 3).

Under natural selection toward a target structure (section 3), the obvious
advantage for a plastic sequence that covers a broad spectrum of structures
is the increased likelihood that some of them are structurally similar to the
target. As pointed out in Scheiner (1993) the cost of plasticity may be in
terms of maintaining the cellular machinery required for plasticity, rather
than the direct impact on fitness due to the realization of a particular plastic
trait. In the stripped down world of RNA there is no such machinery beyond
the molecule itself. Yet, the cost of plasticity is evident: the broader the
range of structures, the less time the sequence will spend in any one of them.
Thus, even if some structures constitute an improvement, this can easily be
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Figure 3: Genotype-phenotype maps. The lower part illustrates the simple
map that takes a sequence to its minimum free energy structure as the only phe-
notype. The upper part schematizes the plastic map that takes a sequence to the
thermodynamic spectrum of shapes within 5kT (typically T = 310.15K). If shape
σ has free energy ∆Gσ, the sequence is assumed to spend a fraction of time in σ

that is given by its Boltzmann factor, exp(−∆Gσ/kT )/Z (values indicated on the
left). The minimum free energy structure is the dominant phenotype, in the sense
that the sequence spends the largest fraction of time in it.
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undermined by a small occupancy time. Incidentally, this is analogous to
Schmalhausen’s argument (Schmalhausen, 1949) that one cost of plasticity
is given by “erroneous” phenotypic changes (Ancel, 1999a). The erroneous
changes in RNA are residencies in detrimental structures.

Biologists have drawn a distinction between two kinds of plasticity: pheno-
typic plasticity proper often refers to beneficial responses to macroenviron-
mental variation, while environmental variance refers to flexible responses to
microenvironmental parameters (Waddington, 1957; Gavrilets and Hastings,
1994). Our work in RNA considers the latter. A given sequence assumes a
range of structures in response to its microenvironment – energy fluctuations
at a constant temperature.

2.5 Epistasis in RNA

Epistasis is the extent to which the phenotypic consequences of a mutation
at position i depend on the genetic background provided by the remaining
sequence. One common estimate for the epistasis of a genome measures the
deviation of pairwise gene interactions from additivity (Wagner et al., 1998).

Some epistatic interactions increase the neutrality of a sequence by making
mutations at other sites inconsequential. Consider the sequence and its min-
imum free energy structure at the center of Figure 4. We call a sequence
position “neutral” if at least one out of three possible mutations at that lo-
cus leave the structure invariant. The neutral positions, like the one labelled
x, are marked with grey bullets. The neutral mutation from C to G at po-
sition x yields the (same) structure shown at the top left of Figure 4. The
’+’ symbols indicate positions that have become neutral as a result of this
mutation, while the ’-’ symbol marks a position that has lost its neutrality.
This illustrates that even if a point mutation does not affect the structure, it
can alter the extent of neutrality across the sequence. Epistasis as the genetic
control of neutrality plays an important role in the evolutionary dynamics
we describe in chapter 3.

2.6 Neutrality: A note in terminology

In section 2.3 two sequences are called “neutral” if they share the same
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minimum free energy structure. The term neutral, however, may be used
to indicate equal fitness. Under the simple map, the phenotype of an RNA
sequence is just its minimum free energy structure (Figure 3). In this case,
neutrality with respect to minimum free energy structures implies neutrality
with repect to both phenotype and fitness. Under the plastic map, however,
the phenotype of an RNA sequence is a repertoire of energetically favorable
structures. In this case, neutrality with respect to minimum free energy
structure is not equivalent to neutrality with respect to phenotype or fitness.
Two sequences that share a minimum free energy structure, will differ in
their remaining repertoire. Nevertheless, we maintain the use of minimum
free energy neutrality for two reasons. First, it is relevant to the phenotype
of sequences under the plastic map, as they spend a majority of time in the
minimum free energy structure. Second, evolutionary dynamics under the
simple map – which constitute our baseline for comparison – have historically
been characterized by this notion (Huynen et al., 1996; Fontana and Schuster,
1998a; Reidys et al., 1998).

3 SIMULATED EVOLUTION IN PLASTIC AND
NON-PLASTIC RNA POPULATIONS

3.1 Model Setup

In this section we describe simulations of evolving RNA populations. Under
the simple genotype-phenotype map (section 2.4) a sequence S has a single
minimum free energy structure σ0 as its phenotype. To determine the fitness
of S, we compare σ0 to a prespecified target structure τ .

This fitness function is motivated by an experimental protocol in which RNA
sequences are evolved, for example, to optimally bind a ligand. RNA se-
quences are artificially selected by running the RNA sample through a column
that has the ligand tethered to the filling material. The desirable portion of
the sample remains bound in the column and is eluted by a solvent with
suitable ionic strength (Tuerk and Gold, 1990; Ellington and Szostak, 1990).
The selected portion is then subject to a further cycle of evolution by ampli-
fication through replication at a controlled error rate. The evolutionary end
product is typically unpredictable in the laboratory situation. Its possible
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shape(s) are, however, implicitly specified by the choice of the ligand, like a
simple lock specifies its key. We are not seeking RNA shapes with particular
chemical properties, since little is known about the link between an RNA
structure and its binding properties or catalytic behaviors. Instead, we spec-
ify the optimal shape directly at the outset, shortcutting the role of ligands in
the laboratory. We then study the evolutionary dynamics, the evolutionary
histories, and the thermodynamic properties of evolved sequences.

We define the selective value f(σ) of shape σ as a hyperbolic function of the
Hamming distance d(σ, τ) between the parenthesized representations (section
2.2) of σ and the target τ :

f(σ) =
1

0.01 + d(σ, τ)/n
, (1)

where n is the length of the sequence. The results reported here are robust
to changes in the functional form of the selective value. In particular, they
also hold under linear and exponential forms.

The fitness rj of a sequence Sj is its replication rate constant, and for the
non-plastic case we simply take it to be:

rj = f(σj
0). (2)

Our population evolves in a model chemical flow reactor whose outflow is reg-
ulated to maintain a nearly constant total sequence population size (Eigen,
1971). The entire system is simulated in terms of continuous time stochas-
tic chemical reaction kinetics. (For a description see Fontana and Schuster
(1987); Huynen et al. (1996); for a general simulation technique see Gillespie
(1976, 1977).) The number of replication events per time unit in the flow
reactor depends on the replication rate constants of the individual sequences
comprising a population, and changes over time as the population evolves
to larger rate constants. When comparing different runs, we therefore plot
statistics along replication events, rather than the time shown by an external
clock.

Point mutations are the sole source of genetic variation in our simulations.
Unless otherwise stated, the replication accuracy per nucleotide position is
0.999, the sequence length is 76 (which corresponds to a short tRNA se-
quence), and the reactor capacity is 1000 sequences. Simulations begin with
a homogenous population of a randomly generated sequence species.
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The plastic fitness function is a simple extension of the one above. For
a sequence Sj, we consider all of its suboptimal structures σj

i whose free
energy E(σj

i ) is within an interval of size ∆ above the minimum free energy
E(σj

0). The σj
i are indexed with increasing energy, where index 0 refers to

the ground state, and the set of all suboptimal structures accessible within
[E(σj

0), E(σ
j
0) + ∆] is denoted with σj(∆). Unless otherwise specified, ∆ =

5kT , where T is the absolute temperature, which is fixed at 310.15K (37◦ C),
and k is the Boltzmann constant, k = 1.98717 · 10−3 kcal/K. Thus, ∆ = 3.08
kcal. The macroscopic environment of our model consists in the target shape
τ and the temperature T . Throughout this paper we only consider fixed τ
and T .

The selective value of a suboptimal structure σj
i is given by f(σj

i ) (equation
1), exactly as in the non-plastic case. For a plastic sequence, however, σj

i

contributes this value to the overall fitness of the sequence in proportion to
the time the sequence spends in it. In the laboratory, a sequence flowing
through the selection column will switch among its alternative structures,
such that each structure contributes to the overall binding probability of the
sequence in proportion to its Boltzmann factor. Hence,

rj =
∑

σj
i ∈σj (∆)

selective value
of σj

i︷ ︸︸ ︷
f(σj

i )

probability of σj
i︷ ︸︸ ︷

exp(−E(σj
i )/kT )

Z
, (3)

where Z is the partition function. Here we assume that a sequence achieves
thermodynamic equilibration among its alternative structures. High energy
barriers between the structures, however, may render this assumption kinet-
ically unrealistic on time scales shorter than the experiment. Our under-
standing of the kinetic process of RNA folding is too immature at present to
assess this claim.

3.2 Discussion of Sample Runs

RNA shape space topology is invariant to plasticity

Figures 5 and 6 juxtapose the progress of a simple and a plastic population
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Figure 5: Evolution under plastic and simple genotype-phenotype maps,
Example 1. These graphs depict the evolution of the population average of the
distance between the minimum free energy structures in the population and the
target (black), as well as the average weighted shape distance to target (grey).
(See text for definitions.) The inset magnifies the trajectories through the first few
million replication events. In the plastic case, fitness improvements correspond to
transitions manifest in the average weighted distance to the target. The target
is a tRNA cloverleaf structure, the population size is logistically constrained to
fluctuate around 1000 sequences, and the replication accuracy is 0.999 per position.
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that evolve towards a tRNA target shape. We will denote population averages
with 〈·〉. The black curves trace 〈d(σj

0, τ)〉, the average distance between the
target and the minimum free energy shapes realized by the sequences in the
population.

The plastic and simple populations exhibit qualitatively similar behavior:
initial relaxation followed by punctuated dynamics. Steps toward the target
shape correspond to difficult transformations from one dominant shape to
another. Recall from section 2.3 that the difficulty of discovering minimum
free energy shapes through mutation is independent of the fitness assigned
to shapes. An evolutionary transformation of one shape into another corre-
sponds to a transition between their neutral networks in sequence space. In
the simulations, flat periods correspond to populations that are mutationally
isolated from higher fitness phenotypes, and are genetically diffusing along
a shape-neutral network or along several shape-neutral networks that are
fitness-neutral with respect to each other. Steps, or difficult shape trans-

Replication Events
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istance to Tar

get

plastic

simple

plastic

simple

Figure 6: Evolution under plastic and simple genotype-phenotype maps,
Example 2. See caption to Figure 5.
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formations, are transitions between neutral networks with a small common
border. Such shape transformations involve the simultaneous shift of several
base pairings in a single mutational event.

The grey curves in Figures 5 and 6 monitor 〈d(σj, τ)〉, the population aver-
age of the weighted shape distance. For any given sequence, d(σj , τ) is the
Boltzmann weighted average distance between its suboptimal shapes and the
target:

d(σj , τ) =
1

Z

∑
σj

i ∈σj(∆)

d(σj
i , τ) · exp(−E(σj

i )/kT ). (4)

In the plastic case, 〈d(σj
0, τ)〉 dictates the trajectory of 〈d(σj, τ)〉. The min-

imum free energy structure of a sequence S is usually closer to the target
than any other suboptimal structure of S. When this is the case, the Boltz-
mann weighted average distance to target over all suboptimals, not just those
within σj(∆), would necessarily be larger than the average minimum free en-
ergy distance to target, 〈d(σj

0, τ)〉. But 〈d(σj, τ)〉, which considers only the
shapes in σj(∆), remains less than 〈d(σj

0, τ)〉. This indicates that the subop-
timal structures are not much worse than the minimum free energy structure
or that their probabilities are relatively small. Below we show that both of
these factors play a role. This is in contrast to the statistics for evolution
under the simple map where the 〈d(σj, τ)〉 fluctuates wildly at values much
higher than 〈d(σj

0, τ)〉.

No Baldwin expediting effect

Figures 5 and 6 represent the outcomes of a large set of similar simulations:
evolution proceeds much more slowly under the plastic map, and plastic
populations never approach the target as closely as do simple populations,
which often attain the target. We defer the explanation of this striking
contrast until section 4.

Here we take issue with a generalization often drawn from the Hinton and
Nowlan class of models (Hinton and Nowlan, 1987; Maynard-Smith, 1987)
that phenotypic plasticity expedites evolution by effectively smoothing the
fitness function. More specifically, they claim that plastic individuals scan
a wider range of phenotypes, and therefore have a better chance of locat-
ing advantageous ones than non-plastic individuals who are blind to other
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possibilities. Plasticity will accelerate genetic evolution, however, only if the
phenotypes realized through plasticity correspond to the phenotypes that
can be reached through mutation. In section 4 we show that such a correla-
tion exists in RNA (plastogenetic congruence), and that it ultimately leads
populations into an evolutionary dead-end. In this section, we counter the
claim that plasticity speeds up the early stages of the evolutionary process.
On average, plasticity does not shorten the early periods of stasis preceding
phenotypic innovations. To see this, we compare the early evolutionary tra-
jectories under the plastic map and the simple map (see the inset of Figure
5, which magnifies the first few million replications).

Recent work specifies the restrictive population-genetic conditions for a Bald-
win expediting effect (Ancel, 1999b). In the present case, the absence of
an expediting effect results from features intrinsic to the RNA genotype-
phenotype map. Consider the evolutionary transition from a structure α to
a higher fitness structure β. The simple population must wait for a mutation
that takes a sequence from minimum free energy structure α to minimum
free energy structure β. In the plastic population, this transition may be
mediated by a sequence that has minimum free energy structure α and sub-
optimal structure β. Call this sequence S. The opportunity to encounter
β as a suboptimal may expedite the production of a mutant with minimum
free energy structure β, if there is a correlation between the suboptimal
structures of a sequence and the minimum free energy structures produced
through mutations on that sequence.

Assume that β is difficult to access from α in the shape space topology sensu
Fontana and Schuster (1998a) (section 2.3). This is typically the case at the
major phenotypic transitions in the simulations. We claim that the discovery
of individual S is approximately as unlikely as the first appearance of an
individual with β as its minimum free energy shape in a simple population
dominated by α. Therefore, plasticity does not significantly expedite the
search for a higher fitness structure.

First we note that the individual S is always possible in principle. If we relax
conditions by asking if there is a sequence S ′ that can assume both shapes α
and β irrespective of their energies, that is, dropping the requirements that β
is in the 5kT -band and α is the minimum free energy structure, then such a
sequence S ′ exists for any choice of α and β. This was proved by Reidys et al.
(1997). A sequence is said to be compatible with a structure if it can form
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Figure 7: Satisfying two structures at once. (After Weber (1997).) Top: Two
structures that differ in a “shift” – a transformation in which one strand slides
past the other (see Figure 2). Middle: The same structures represented as circles
with the base pairs drawn as chords. Bottom: The two circles superimposed to
illustrate the additional constraints on a sequence that arise from having to satisfy
both structures simultaneously. Position 1 must have a nucleotide that can pair
with both position 13 and 12. But the nucelotide choices at 12 must take into
account its complementarity to position 2 as well, and so on until the end of this
chain is reached at position 9. Any such chain can be satisfied, and hence there
exists at least one sequence compatible with any two structures. (A secondary
structure can be thought of as a permutation acting on sequence positions. For
example, the permutation corresponding to the structure on the left specifies that
positions {5, 6, 7, 8, 9} are fixed points, and that 4 is assigned to 10, 10 to 4, 3
to 11, 11 to 3, etc. The two permutations corresponding to the two structures
generate a dihedral group, and the chain of constraints in the bottom circle is one
orbit obtained by the action of this group on the sequence positions (Reidys and
Stadler, 1996; Reidys et al., 1997).)
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that structure, regardless of where it ranks energetically. A given structure
α, then, determines a set consisting in all sequences compatible with α. Our
individual S ′ must therefore be an element of the intersection between the
compatibility set of α and the compatibility set of β. The theorem of Reidys
et al. (1997) states that the intersection of any two compatibility sets is
non-empty.

One can compute the size of these intersections Weber (1997). Figure 7 pro-
vides a non-technical illustration. A sequence can only obtain a structure
if positions that are supposed to pair are occupied by nucleotides that are
actually able to pair. Satisfying two structures at once entails additional
constraints. If the two structures are “independent”, meaning that positions
that pair in one structure are disjoint from positions pairing in the other,
the constraints simply add up. If, however, the two structures are non-
independent, additional constraints arise because certain positions must now
satisfy two pairings simultaneously, and, depending on how the two struc-
tures are related, such constraints propagate along chains of dependencies.
The constraints on nucleotides for a sequence that must satisfy two particu-
lar structures increase with the number and length of such chains. The most
severe constraints arise from structure pairs that differ in shifts and their
generalization (see Figures 2 and 7). These highly constrained sequences
are precisely those that underlie the difficult shape transformations in the
accessibility topology of Fontana and Schuster (1998a,b). These transfor-
mations correspond to the evolutionary steps of Figures 5 and 6. Plasticity
could expedite these transformations only after the population finds these
highly constrained sequences, that is, the intersection of the compatibility
sets of α and β. Yet, the smallest overlap regions correspond to the diffi-
cult transformations. These regions are, in essence, as hard to find as the
boundary between the neutral networks of α and β. The benefit gained once
the population is in the overlap regions is negligible compared to the time
required to find these regions in the first place. The search for these regions
is made even more challenging by the requirement that the intermediary se-
quence must not only be compatible with α and β, but it must have α as its
minimum free energy structure and β within 5kT . Therefore, if the transfor-
mation from α to β is hard to achieve in the simple case, it is approximately
as difficult to achieve in the plastic case. In this way, the failure of plasticity
to expedite the discovery of new structures stems from the organization of
the RNA genotype-phenotype map.
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Environmental canalization (reduction of plasticity)

In Figure 8 we monitor the time course of five population plasticity statistics
for the plastic case. We discuss three of them here. Curve (i) in Figure
8 shows the average fraction of the partition function realized within 5kT ,
which is

zj =
1

Z

∑
σj

i ∈σj(∆)

exp(−E(σj
i )/kT ). (5)

This indicates the total probability of the structures in 5kT relative to all
structures attainable by sequence Sj , that is, how much of the partition
function is accounted for by the 5kT -neighborhood of the minimum free
energy structure. Curve (iv) shows the average number of structures realized
in 5kT , 〈|σj(∆)|〉, while curve (v) tracks the average structure variance,
〈varσj(∆)〉, with

varσj(∆) = d(σj
i , σ

j
0)

2 − d(σj
i , σ

j
0)

2

, (6)

where the bar indicates an average over the structures in σj(∆). In equation
(6) we make use of the fact that the notion of variance can be generalized
to sets (here of structures) for which a mean does not exist, but for which
one can compute pairwise distances between the elements. Finally varσj(∆)
conveys information about the structural diversity in the plastic repertoire
of sequence Sj , while |σj(∆)| simply counts the structures. These are three
quantitative measures of RNA plasticity. We juxtapose these to adaptive
events indicated by the evolutionary trajectories (curves (vi) and (vii)).

After an initial period, 〈|σj(∆)|〉 levels off to between 126 and 254 structures
for the simple case (not shown). In contrast, the plastic curve (iv) attains
much lower, fairly constant levels of about 30, 13, and 20 structures. This
shows a population-wide reduced plasticity compared to the simple case and
the initial condition (204 structures in 5kT ). The loss of plasticity occurs
very rapidly. The reduction is also evidenced by the average fraction of the
partition function, 〈zj〉 (curve (i)), which rapidly climbs to 0.9 and settles
at 0.95, while the simple case remains in the range [0.65, 0.75] (not shown).
The structure variance, curve (v) (range in the plastic case: [7, 15], versus
range in the simple case: [46, 92]), indicates that alternative structures in the
5kT -band become more similar to the ground state.
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Figure 8: Plastic evolution, Example 1. The time evolution of five plasticity
statistics (i-v) are shown in conjunction with the major shape transitions (curves
(vi) and (vii)). See text for the definitions of the quantities monitored. The inset
enlarges a population-level Simpson-Baldwin effect discussed in the text.
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Transitions between evolutionary epochs are marked by dashes running verti-
cally through all figures. The dynamics surrounding a transition break down
into four episodes: (a) the population is dominated by a structure with no
indications of a better structure; (b) a sequence with a better suboptimal
structure arises and dominates the population; (c) natural selection favors
mutations that move that structure to the minimum free energy; (d) it then
favors subsequent mutations that stabilize the new minimum free energy
structure by eliminating variation in the remaining plastic repertoire. As
described above, populations spend long periods of time in stage (a). Stage
(b) is rapid and does typically not transpire at the population level. Stage
(c), during which the new structure has become the minimum free energy
structure but has not yet been stabilized, is well-illustrated by the dip in 〈zj〉
immediately after transitions 2, 3 and 6 in Figure 8. The subsequent rapid
assimilation to pre-transition levels reflects the stage (d). We see even more
dramatic evidence for the fourth stage at the beginning of the evolutionary
trajectory, immediately after transition 1, with the drop in the number of
structures within 5kT , 〈|σj(∆)|〉 (curve (iv)) in Figure 8.

Example of a population-level Simpson-Baldwin effect

The four episodes surrounding transitions constitute the Simpson-Baldwin
effect. As discussed in the Introduction, there is a discovery phase (stages
(a) and (b)) and an assimilation phase (stages (c) and (d)). Transitions 4
and 5 in Figure 8 are somewhat unique in that the entire Simpson-Baldwin
effect is manifested at the population-level, although not strictly chrono-
logically. At transition 4, a new advantageous sequence species S with a
suboptimal structure β that is closer to the target than its minimum free
energy shape α begins to invade the popuation. After 106 replication events
the first sequences S ′ appear with β as their minimum free energy structure.
The population retains α, however, as a frequent suboptimal shape with high
Boltzmann weight. Mutation actively shifts around weights between α and
β. Although α is selectively worse than β, this can be offset by a higher
Boltzmann probability. Shape α thereby succeeds in remaining the most
prevalent minimum free energy structure. This shows up as a discrepancy
between the population averages of the weighted distance to target (curve
vii), 〈d(σj, τ)〉, and the distance based only on the minimum free energy
structures (curve vi), 〈d(σj

0, τ)〉, see the enlarged inset at the bottom of Fig-
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ure 8. Upon 2 · 105 further replications, sequences with β as the minimum
free energy structure take over the population, and 〈d(σj

0, τ)〉 consequently
drops towards 〈d(σj, τ)〉. The situation reverses, however, as Boltzmann
probabilities shift again. After 6.5 · 105 replications β disappears completely
as a minimum free energy structure, and is observed only as a suboptimal.
Finally, 3 · 105 replications later the final transition back to sequences with β
as minimum free energy structure occurs, accompanied by a realignment of
〈d(σj, τ)〉 with 〈d(σj

0, τ)〉. The plot of 〈zj〉 indicates a significant subsequent
reduction in plasticity that stabilizes β (label “f” in graph (i) of Figure 8).
In terms of minimum free energy structures, events 4 and 5 taken together
constitute one single transition that occurs in two stages. Event 4 marks the
onset of the Simpson-Baldwin discovery phase which lasts until event 5 when
the assimilation phase begins. This is the only example we encountered of
both Simpson-Baldwin phases being revealed at the population level.

3.3 Summary

A quantitative characterization of simulated RNA evolution under the plastic
and the simple genotype-phenotype maps, shows the following:

• The punctuated character of the evolutionary dynamics holds for RNA
populations evolving under both the simple and the plastic genotype-
phenotype map.

• The populations evolving under the plastic map halt evolutionary progress
much farther away from the target structure than those evolving under
the simple map.

• Plastic populations show no evolutionary speed-up (or Baldwin expe-
diting effect); overall they exhibit a strong slow-down.

• A strong reduction in plasticity occurs in the plastic case. The Simpson-
Baldwin effect is observed along individual founding lineages causing
the transitions. The discovery phase, however, typically occurs rapidly
and is not evident in population-level statistics. We observed one ex-
ample of a Simpson-Baldwin effect which was entirely apparent at the
population level.
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4 PLASTOGENETIC CONGRUENCE AND
NEUTRAL CONFINEMENT

4.1 Plastogenetic congruence

Section 3 demonstrates that a plastic population evolving towards a constant
target undergoes a drastic narrowing of plastic repertoires, and ultimately
hits an evolutionary dead-end. In the current section, we construct a causal
bridge from the loss of plasticity to the loss of evolvability by arguing a
significant correlation between the structures available to a sequence in its
plastic repertoire and the minimum free energy structures present in the
mutational vicinity of that sequence. First we use a concrete example to
provide intuition for the mechanistic underpinnings of such a correlation.
Then through statistical evidence, we claim that it is a fundamental property
of the genotype-phenotype map.

The top left corner of Figure 9 shows a short sequence A and its minimum
free energy structure α together with the list of all suboptimal configurations
within 5kT of the minimum free energy. While the sequence spends 52% of
the time in α, its relative stability is only marginal, as it competes with a
number of energetically close suboptimal structures. These alternative struc-
tures are energetically easy to access because base pair interactions holding
together the stem in α are weak. For example, the entire stem can switch
into a different position, such as in the 4th suboptimal configuration β.

Significantly, α’s marginal stability coincides with an increased sensitivity to
mutations. For example, mutating a position inside α’s loop (arrow) tips the
thermodynamics in favor of β. The result is a change in the minimum free
energy structure from α to β (upper right corner of Figure 4).

Now consider a neutral mutation - one that does not displace α as the mini-
mum free energy structure - transforming A into B (lower left corner of Figure
4). The mutation strengthens the thermodynamic stability of the stacking
region of α. The Boltzmann weight of α increases from 52% in sequence A
to 88% in B. Notice that the set of alternative structures available to B
within 5kT has become considerably smaller compared to A. In addition,
the few alternative structures that occur with appreciable probability have
become more similar to the ground state. The relative stability of β (which
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is still compatible with the mutated sequence) has dropped by one order of
magnitude and disappeared from the set of 5kT -suboptimal structures in B.
This coincides with an increased robustness of α towards mutations. In fact,
the same nucleotide change that led from A to A′, changing its minimum free
energy structure, leaves α invariant when applied to sequence B.

The upper arrow from A to A′ illustrates the correlation between structures
in the plastic repertoire and structures in the mutational vicinity. In par-
ticular, this point mutation changes a (5kT -)suboptimal structure into the
minimum free energy structure. It is not difficult to imagine that a sequence
A with β in its plastic repertoire is much more likely to have a genetic neigh-
bor with β as the minimum free energy structure, than a sequence A′ that
lacks β in its plastic repertoire. The arrows from A to A′ and further to B′

illustrate the epistatic control of neutrality (section 2.5). This is a special
case of the correlation just described: the more time a sequence spends in its
minimum free energy structure, the higher the fraction of neutral neighbors
in its genetic vicinity.

To summarize, we call a shape σ “plastically accessible” to a sequence S if σ
is in the plastic repertoire of S. Likewise, σ is “genetically accessible” from
S, if there exists a one-error mutant S ′ of S, such that σ is the minimum free
energy structure of S ′. The alignment of plastic accessibility with genetic
accessibility means that the set of shapes a particular sequence can fold into
(plastic accessibility) strongly correlates to the minimum free energy shapes
realized by its one-error mutants (genetic accessibility). We call this property
of the genotype-phenotype map “plastogenetic congruence”.

The genetic accessibility of phenotypes constrains the evolutionary trajec-
tory under the simple map (Fontana and Schuster, 1998a,b). In the plastic
simulations, however, plastic accessibility, through its alignment with genetic
accessibility, has an equally profound impact on the evolutionary dynamics.
We return to this after a quantitative demonstration of plastogenetic con-
gruence for the RNA folding map.

Ideally we would perform statistics on a broad sampling of genotypes to show
the extent of overlap between plastic repertoires and mutant-neighboring
minimum free energy structures. In lieu of this computationally prohibitive
approach, we present three pieces of partial evidence for plastogenetic con-
gruence:
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Figure 9: Plasticity and minimum free energy shapes of genetic neigh-
bors. The figure illustrates how the plasticity of a sequence correlates with the
minimum free energy structures of one-error mutants. Arrows show point muta-
tions. The mutation from B to B′ involves the same nucleotide substitution at
the same position as the mutation from A to A′. The only difference is the slight
change in context due to the neutral mutation from A to B. See text for details.
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1. The frequency of a structure β as a minimum free energy structure
in the one-mutant neighbors of a sequence S is significantly larger for
sequences that have β in their plastic repertoires than for sequences
that do not.

2. The minimum free energy structure α of a sequence S is present at high
frequency in the plastic repertoires of one-mutant neighbors.

3. For any advantageous shape β in the plastic repertoire of any sequence
S, S can typically evolve to another sequence S ′ with β as its minimum
free energy structure, in only (on average) five point mutations.

In the first approach we generate random sequences Sα with a particular
structure α as the minimum free energy structure (“inverse folding”, see Ho-
facker et al. (1994)). Since two sequences that share the same minimum
free energy structure often share other suboptimal structures, this simple
procedure yields sets of sequences Sβ

α that share the same ground state α
and that also have a particular shape β in their 5kT -plastic repertoire. We
simultaneously obtain control samples of sequences Sα that specifically lack
the shape β from their plastic repertoire. We then compute the minimum
free energy shapes of all one-mutant neighbors of sequences in the sample Sβ

α

and in the control sample Sα, and compare the frequencies of sequences with
β as the minimum free energy shape. Although a systematic exploration
of the possible shape combinations α and β is unfeasible, Table 1 provides
anecdotal evidence for our proposition: A sequence (with minimum free en-
ergy structure α) that has a structure β among its 5kT suboptimals is much
more likely to have a one-error mutant with β as its minimum free energy
structure than a sequence (with minimum free energy structure α) that lacks
β among its 5kT suboptimals.

Table 4.1 shows ratios of likelihoods. The top seven structures β are in the
neighborhood of α in the sense of the shape topology developed in Fontana
and Schuster (1998a,b). We are able to attain larger samples for the top
structures as they appear more frequently as suboptimals of sequences with
minimum free energy structure α. The likelihood ratios indicate that these
suboptimal structures are easily converted into minimum free energy struc-
tures by a single point mutation. The last row of Table 4.1 shows the only
counterexample we found when α is the tRNA cloverleaf. We observe similar
patterns for other ground states α, and for sequence lengths other than 76.
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ground state (α)
((((((...((((........)))).(((((.......))))).....(((((.......))))).))))))....

suboptimal shape (β) o-ratio n-ratio

((((((...((((........)))).(((((.......)))))......((((.......))))..)))))).... 9.0 8.0
(((((....((((........)))).(((((.......))))).....(((((.......)))))..))))).... 7.4 6.7
((((((...(((..........))).(((((.......))))).....(((((.......))))).)))))).... 6.6 4.9
.(((((...((((........)))).(((((.......))))).....(((((.......))))).)))))..... 6.2 4.8
.........((((........)))).(((((.......))))).....(((((.......)))))........... 14.0 3.9
((((((...((((........)))).(((((.......))))).....((((.........)))).)))))).... 4.0 3.3
((((((...((((........)))).((((.........)))).....(((((.......))))).)))))).... 3.5 2.8
((((((....(((........)))..(((((.......))))).....(((((.......))))).)))))).... 15.8 14.0
..((((...((((........)))).(((((.......))))).....(((((.......))))).))))...... 9.7 10.8
((((((...((((........)))).(((((.......))))).(...(((((.......)))))))))))).... 7.5 7.5
((((((.(.((((........)))).)((((.......))))......(((((.......))))).)))))).... 10.8 7.1
((((((...((((........))))..((((.......))))......(((((.......))))).)))))).... 7.0 6.2
(((((....((((........)))).(((((.......)))))...(.(((((.......))))).)))))).... 7.3 5.7
((((((...((((.(.....))))).(((((.......))))).....(((((.......))))).)))))).... 6.3 5.5
((((((....(((........)))(.(((((.......))))).)...(((((.......))))).)))))).... 7.0 4.7
((((((.(.((((........)))).(((((.......)))))......((((.......))))).)))))).... 5.2 4.2
((((((...((((.(....).)))).(((((.......))))).....(((((.......))))).)))))).... 2.8 3.2
((((((.(.((((........)))).(((((.......))))).....(((((.......)))))))))))).... 2.7 2.4
((((((.(.((((........)))))(((((.......))))).....(((((.......))))).)))))).... 0.5 0.4

Table 1: Plastogenetic congruence I. Samples of sequences with a tRNA
cloverleaf as the minimum free energy structure α (top line) and various structures
β as suboptimal configurations were generated as described in the text. The
frequency of β becoming the minimum free energy structure upon one point
mutation was computed for the sample of sequences having β as a suboptimal
and for a control sample of sequences lacking β within a 5kT range from α. The
ratio of the former to the latter is tabulated. Two kinds of frequencies were
computed: the frequency with which β occurs as a ground state among all 1-error
neighbors (“occurrence frequency”, and corresponding o-ratio) and the frequency
with which it occurs at least once in a 1-error neighborhood (“neighborhood
frequency”, and corresponding n-ratio). For example, row 1 states that the shown
shape occurs 8 times more frequently as a minimum free energy structure in the
1-error neighborhood (n-ratio) of a sequence that has that shape as a suboptimal
compared to one that lacks it. The first part of the table is based on samples with
more than 200 sequences with β as a suboptimal, while the second part is based
on sample sizes of more than 100 but less than 200 sequences. A given sequence
may have several of the suboptimal configurations listed in this table.
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In a second approach, we generate a sample of sequences with minimum free
energy structure α (a “neutral set” of α), and check for the presence of α
in the plastic repertoires of sequences obtained by one point mutation from
the neutral set. We search and calculate statistics over only the one-mutant
neighbors that are compatible (see section 3.2) with α, since only these can

Energy Band [kT]

Freq
uency

i

ii

Figure 10: Plastogenetic congruence II. For each point in the graph, we gen-
erate a new sample of 100 sequences with the tRNA cloverleaf as their minimum
free energy structure. All one-error mutants were scanned for the presence of the
tRNA cloverleaf as a suboptimal configuration. The graph shows the frequency of
such sequences as a function of the energy range ∆ that defines the plastic reper-
toire. Curve (i) refers to the frequency with which a sequence in the sample has
at least one one-error mutant with the desired suboptimal structure (“neighbor-
hood frequency”), while curve (ii) shows the “occurrence frequency”. See text for
details.

have α as a suboptimal in the first place. (Given a sequence S, the fraction
of one-error mutants compatible with S is 1 + (nGU − 5nbp)/3n, where n
is the sequence length, nbp is the number of base pairs in α and nGU is
the number of GU pairings that would occur when S folds into α.) While
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sequences that are compatible with α have, by definition, α among their
suboptimals at some energy, we are only interested in the limited plasticity
range of 0 ≤ ∆ ≤ 10kT from the minimum free energy. Structures outside
this range have Boltzmann probabilities too low to influence fitness. Figure
10 shows the fraction of sequences that have α, the tRNA cloverleaf, among
their suboptimal configurations and that are located in the compatible one-
error boundary of a tRNA neutral set. This fraction is shown as a function
of the energy interval ∆. The fraction of sequences in the sample that have
at least one one-mutant neighbor with the tRNA as a suboptimal (curve i)
hits 1 at only 0.6kT , while the fraction of all one-error mutants (curve ii) is
above 0.8 at 5kT , and reaches 1 at 9.6kT (for T = 37◦ C).

The first numerical observation demonstrates that the occurrence of α among
the plastically accessible configurations of a sequence indicates the immediate
vicinity of α’s neutral network. The second method shows that α’s neutral
network casts a “shadow” into the energetically low lying suboptimal configu-
rations realized by sequences in its one-error compatible boundary. Together
these facts suggest that plastic accessibility and genetic accessibility mir-
ror each other in our RNA model. From a biophysical point of view, this
matches intuition. It means that the thermodynamic stability of a subopti-
mal structure α that is realized with non-negligible probability can frequently
be improved (even to the point of making α the ground state) by one suit-
ably placed point mutation. This occurs “positively” through mutations in
the base pairing positions of α to nucleotides that yield better stacking en-
ergies; and through similar modifications to mismatches at the termini of
helical regions. It also occurs “negatively” through mutations that outright
eliminate energetically competing structures by making the sequence incom-
patible. Intuitively, the mutational stabilization of structures toward which
a sequence is already predisposed occurs more readily than the construction
of a minimum free energy structure from scratch.

The evolutionary reduction of plasticity proceeds if plasticity entails a fitness
cost and mutation produces similar but less plastic alternatives to existing
phenotypes. The latter relies on plastogenetic congruence. Figures 11 and
12 emphasize this evolutionarily enabling function of plastogenetic congru-
ence. We generate a sample of sequences with a given α as a 5kT -suboptimal
configuration and no constraints on the minimum free energy structure. The
likelihood of obtaining sequences with a predefined α among their 5kT reper-
toires can be tuned by enriching those sequence segments that should fold
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into the stacking regions of α with GC pairs (see inset of Figure 11) which
contribute the largest stacking energy.

We let each sample sequence be the starting point of a gradient walk. At
each step of a walk, the one-error mutant is chosen that most increases the
Boltzmann probability P (α) of α. Figure 11 shows the distribution of the
walk lengths until α becomes the ground state and until P (α) cannot further
be improved. The graphs at the left of Figure 11 confirm that there is a
large probability of making α the ground state in a single point mutation.
Furthermore, this one-step probability is lower for samples that permit α to
lie higher in the energy interval ∆. The difference is one order of magnitude
as ∆ increases from 5kT to 8kT . A higher GC content in stacking regions
also increases the one-step probability, since any bias toward α helps its
evolution to lower free energy.

As shown in Figure 11, α usually becomes the minimum free energy structure
in only two to three mutations, yet it takes many more mutations for the
thermodynamic stability P (α) to attain its local maximum.

Figure 12 shows the distributions of P (α) when α has become the minimum
free energy structure for the first time and when P (α) is a local maximum.
Two aspects are worth noting. First, the degree to which the thermodynamic
sharpness of tRNA structures (for example) can be improved is large. Second,
the final P (α)-distribution is much narrower and the average P (α) attained
is substantially closer to 1 for a tRNA structure (I) than for another structure
(II) chosen randomly. Only 68% of the gradient walks found within 100 steps
a sequence with the shape II as the minimum free energy structure. This
suggests structure dependent limits to canalization.

In sum, this third perspective on plastogenetic congruence looks beyond the
one-error neighborhood. If a conversion of a suboptimal shape into a mini-
mum free energy structure cannot be achieved in a single step, it can occur
gradually, over several steps. Once a structure has become the ground state,
there is still room for a significant reduction of plasticity.

4.2 The evolutionary downside of plastogenetic congruence

We have seen that plastogenetic congruence enables evolution, in that muta-
tions easily move a good structure from a minor position in a plastic reper-
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(i)

(ii)

I

I I

Figure 11: Plastogenetic congruence III. The inset shows the frequency with
which a random sequence compatible with a tRNA cloverleaf (structure I) has that
structure among its 5kT suboptimal configurations (curve i). This frequency is
shown as a function of the fraction of GC or CG pairs in the sequence segments
that fold into the stacking regions of the cloverleaf shape. Curve ii is the frequency
with which such sequences have structure I as a minimum free energy structure.
The main graph shows the distribution of gradient walk lengths as described in the
text. There are two sets of curves, black (left hump) and grey (right hump). The
left set pertains to walk lengths up to the first appearance of the given structure
(I or II) as a minimum free energy structure. The right set is the distribution of
walk lengths until the Boltzmann probability of that structure could not be further
improved. Only walks that terminated within 100 steps are considered. Circles
pertain to structure II, ∆ = 5kT , GC fraction in helical regions is 0.5, 1000 distinct
walks were perfomed of which 686 terminated. Squares pertain to structure I,
∆ = 5kT , GC fraction is 0.5, 1000 walks of which 999 terminated. Triangles-up
pertain to structure I, ∆ = 5kT , GC fraction is 0.33 (i.e., no bias), 916 walks
of which 909 terminated. Triangles-down pertain to structure I, ∆ = 8kT , GC
fraction is 0.33 (i.e., no bias), 322 walks of which 322 terminated.
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toire to the minimum free energy position. There is, however, a flip-side
to plastogenetic congruence. By linking the reduction of plasticity to the
reduction in genetic variability, plastogenetic congruence stalls evolution.

Figure 12: Plastogenetic congruence III. The frequency distributions of Boltz-
mann probabilities for structures I and II are shown. See Figure 11 for details.
The left set of curves show the Boltzmann probabilities when the structures first
appear as the ground state, and the right set shows the Boltzmann probabilities
at local fitness optima of the gradient walk.

We now consider the neutrality of the sequences obtained through our gra-
dient walks. Recall that neutrality is the fraction of single base mutations
that preserve the minimum free energy structure. The top graph of Figure
13 shows four examples of gradient walks, chosen for their diversity of ap-
proaches to a local optimum. The walk criterion optimizes the Boltzmann
probability of the structure depicted at the bottom of Figure 13. (This
structure dominated the population when the evolutionary process of Figure
6, section 3.2, became trapped.) The bottom part of Figure 13 shows the
concurrent changes in neutrality along these same gradient walks. First a
structure descends to the minimum free energy configuration, and the neu-
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trality drops to a minimum. Then the neutrality increases sharply to levels
above 0.4. This value lies in the tail of the distribution of neutralities for
all sequences with that minimum free energy structure (not shown). The
mean of this distribution is 0.3 (Matt Bell, personal communication). Note
that the fraction of one-error neighbors compatible with the shown structure
is approximately 0.55. (The exact compatibility fraction depends on the U
content of a sequence.) One walk (up-triangles) reaches close to but does not
sustain this upper bound for neutrality.

After the desired structure has moved into the minimum free energy posi-
tion, point mutations that increase its Boltzmann probability typically also
increase the neutrality of the sequence. These changes have an epistatic effect
of the kind we define in section 2.5 and Figure 4.

Recall that neutrality indicates robustness to genetic modification and the
Boltzmann probability of the minimum free energy structure indicates ro-
bustness to thermodynamic perturbation. As such, we conclude that genetic
canalization occurs in tandem with environmental canalization. In these
walks and in our full-blown simulations, environmental canalization - the
reduction of plasticity - is the directly selected response to selection in a
population. Genetic canalization, however, is not an adaptation. It is in-
stead a byproduct of environmental canalization, to which it is linked by
common genetic underpinnings. The possibility that environmental and ge-
netic canalization share a genetic basis which might account for the evolution
of canalization was recently hypothesized by Wagner et al. (1997). Our study
of the evolution of plasticity in RNA provides a mechanistic realization for
this hypothesis.

Figures 14 and 15 provide support for the simultaneous drops in plasticity
and evolvability. The first of these figures illustrates the surprising extent of
plasticity reduction in RNA. It compares the density of structural states of
three sequences that have been obtained through different processes but share
the same minimum free energy structure. The common minimum free energy
shape is the characteristic shape α found at the dead-end of the evolutionary
process depicted in Figure 6 (section 3).

The random sequence obtained by inverse folding α (Hofacker et al., 1994)
has 574 different structures within 3 kcal of α. It spends only 3% of the
time in α, and the combined probability of the 574 alternative configurations
accounts for only 58% of the partition function. The different configurations
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Figure 13: Gradient walks in plastogenetic space. Gradient walks are gen-
erated by moving from the current sequence to its one-error mutant that most im-
proves the Boltzmann probability of a prespecified structure. Walks begin with se-
quences that have that structure within their 5kT plastic repertoire. Top: Progress
profiles along sample walks. Bottom: The concurrent development of neutrality
(fraction of one-error mutants with the same minimum free energy structure) along
these walks.



L. Ancel and W. Fontana: Plasticity and Evolvability 43

cover a wide range of structural diversity.

The second sequence is the product of evolution under the simple map. We
inoculated a simulated flow reactor with the aforementioned inverse folded
sequence, and specified its minimum free energy structure α as the target
structure. This leaves no room for phenotypic improvement. Despite the
absence of direct selection pressure on the well-definition of the ground state,
we observe a reduction of plasticity by one order of magnitude. In van
Nimwegen et al. (1999a), we learn that a population evolving on a neutral
network under the simple map will concentrate on sequences with higher
than average neutrality. (See Figure 15 below and Figure 18 in Section 5.2.)
Because mutations off the neutral network yield, on average, much lower
fitness phenotypes, there is indirect selection against sequences in the neutral
network that have a high fraction of one-error mutants off the network, i.e.
low neutrality. This is a second order effect that depends on the probability
of deleterious mutation. Similar observations were made with a model of
genetic regulatory networks by A. Wagner (1996). The evolved sequences
that have become mutationally more robust also exhibit a correspondingly
lower plasticity. This is a manifestation of plastogenetic congruence which is
(weakly) effective even under the simple map.

The last sequence in Figure 14 is evolved under the plastic map where reduced
plasticity is the direct consequence of natural selection. The size of the plastic
repertoire decreases by another order of magnitude to only 4 structures in
addition to the ground state which is occupied 67% of the time. If the
molecule equilibrates over all its states, it spends 94% of its time in these 5
configurations that are highly similar to each other.

Figure 15 shows the neutral positions of these sequences. We call a position
neutral if at least one mutation at that position leaves the minimum free
energy structure unchanged. Figure 15 additionally includes three sequences
obtained similarly for the structural end-point in the evolutionary process
of Figure 5, section 3. For the structures on the left, the neutrality of the
sequences increases from 0.184 for the random sequence to 0.412 for the
neutrally evolved sequence to 0.456 for the canalized sequences. Similarly
on the left, the neutrality increases from 0.158 to 0.311 to 0.430 from top
to bottom. The neutral coverage in the canalized case is almost perfect.
That is, a position will tend to be neutral if it permits a mutation that does
not destroy the compatibility of the sequence with its minimum free energy
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Figure 14: Density of states in 5kT . The structural density of states is shown
for three sequences that have been obtained by inverse folding, neutral evolution
under the simple map, and canalization under the plastic map. All three sequences
have the same ground state. For the first two sequences, we present a few sample
structures with their energy on the right hand scale. We display the complete
repertoire of the third sequence. The grey boxes indicate many non-displayed
structural states.
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Figure 15: Neutral positions. The emphasized positions are those with at
least one neutral nucleotide substitution. We highlight these neutral postitions for
inverse folded, neutrally evolved, and canalized sequences on two minimum free
energy structures.



L. Ancel and W. Fontana: Plasticity and Evolvability 46

structure. The intermediate neutrality of the neutrally-evolved sequences
reflects the second-order selection for increased neutrality under the simple
map as discussed above. The further increase in neutrality that occurs under
the plastic map is a side-effect of the sharp reduction in plasticity.

4.3 Neutral confinement

Plastogenetic congruence provides both the mechanism for an evolutionary
reduction of plasticity and the link between this reduction and the ultimate
evolutionary dead-end. Plasticity is costly because more structures in the
plastic repertoire implies less time spent in any one. Plastogenetic congruence
enables populations to reduce these fitness costs through genetic assimilation
- the movement of an advantageous suboptimal structure to the minimum
free energy structure, and subsequent reduction in plasticity. At the same
time, plastogenetic conguence causes a loss in variability. In this section we
closely examine the extent to which populations end up genetically isolated
from phenotypic novelty.

Figure 16 compares the frequency distribution of neutralities at the end of
the plastic simulations depicted in Figures 5 and 6 (filled circles) and the cor-
responding simple runs (down-triangles). (The data represented by squares
is discussed below.) Again, the neutrality of a sequence is the fraction of its
one-error mutants that share its minimum free energy structure. It indicates
the lack of phenotypic variability of the sequence. The plastic population
evolves to a distribution of neutralities with a much higher average and lower
kurtosis than that of the non-plastic population.

Sequences with high neutrality have only a small proportion of distinct phe-
notypes in their mutational vicinities, and are therefore unlikely to mutate
towards a higher fitness phenotype. Furthermore, we argue that the mini-
mum free energy structures of the few non-neutral neighbors offer little phe-
notypic diversity, making the discovery of novel advantageous mutants even
more unprobable. High neutrality correlates with high structural similarity
between the ground state structure and the other configurations in the plas-
tic repertoire (Wuchty et al., 1999). By plastogenetic congruence, this comes
to mean that a one-error mutant of a low-plasticity sequence either folds
into the same minimum free energy structure (neutrality) or into a structure
that is very similar to it. Very similar here means that the structures dif-
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Figure 16: Neutral confinement. We measure the neutrality of each sequence
species in the population support, and plot a frequency distribution. This just
means that each sequence type is weighted the same, irrespective of its frequency
in the population. Frequency-weighted plots look similar, with more dramatic
high-neutrality peaks, and subdued low-neutrality spectrum. Top: Populations
pertaining to the simulation of Figure 6. Filled circles: population support neu-
trality after 4.2×106 replications under the plastic map (the structure shown in the
inset dominates). Down-triangles: neutrality at the end of the simple run (Figure
6) with the simple map. Squares: neutrality of a population that has evolved for
5.66 replications from the one underlying the filled-circle data when plasticity was
switched off. Bottom: Similar analysis for populations pertaining to the simula-
tion shown in Figure 5. Filled circles: with plasticity after 30 × 106 replications.
Down-triangles: simple run without plasticity after 32×106 replications. Squares:
evolved from the filled-circle data for 4.4×106 replications with plasticity switched
off.
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fer slightly with respect to stack lengths or loop sizes. As a consequence,
the discovery of new advantageous shapes is considerably slowed down and
eventually halted. We say the population is “neutrally confined”.

Highly neutral regions of a neutral network appear to be wide-spread and con-
nected (Matt Bell, personal communication). Genetic diversification, there-
fore, still occurs within these regions. Yet the extent of genetic variation is
insufficient to produce difficult shape transformations, such as a shift or the
de novo creation of a stack (Figure 2).

Neutral confinement in RNA seems independent of the mutation rate. We
simulate evolution on a neutral network by starting a population with se-
quences that have the designated target structure as their minimum free
energy structure. Figure 17 depicts such simulations that use the structure
shown at the top of Figure 16 as both the starting minimum free energy
shape and the target. Figure 17 monitors the fraction of sequences with
that structure as a function of the replication accuracy per position. This is
done for two values of the superiority (see caption) and for both the plastic
and the simple map. The phenotypic error threshold (Huynen et al., 1996;
Reidys et al., 1998) is the replication accuracy at which that minimum free
energy structure is lost from the population. At the same time we monitor
the average neutrality of sequences with that structure. The independence of
the average neutrality from error rate and superiority was predicted for the
simple case by van Nimwegen et al. (1999a). In the plastic case, however, the
independence is rather unexpected. In section 5 we present formal models
of evolution under the plastic map. They predict a shift in the equilibrium
distribution from high neutrality (of neutral confinement) to lower neutrality
at a mutation rate higher than the error threshold. This suggests that as the
mutation rate increases, the population goes directly from neutral confine-
ment into falling completely off the neutral network (error catastrophe).

To summarize, we have demonstrated that plastogenetic congruence plays
three critical roles. First it enables the genetic assimilation of suboptimal
shapes into ground states. Second it facilitates the reduction of plasticity.
This occurs under stabilizing selection following a transition, in the early
periods of apparent stasis when the genetically accessible phenotypic novelty
is either neutral or of lower fitness. Third, during this reduction, plastoge-
netic congruence yields the advance towards sequences with low phenotypic
variability – sequences in an evolutionary dead-end.



L. Ancel and W. Fontana: Plasticity and Evolvability 49

Figure 17: Neutrality as a function of replication accuracy. Populations
were obtained by neutral evolution with different replication accuracies on the
structure α shown at the top of Figure 16. The graphs that decay exponen-
tially with decreasing replication accuracy represent the stationary frequency of
the target phenotype α in the population. The nearly constant graphs monitor
the average neutrality (in the population support sense of Figure 16; essentially
the same figure obtains when sequences are weighted by their frequency) of the
sequences on the “master network” (i.e., whose minimum free energy configura-
tion is the target α). The replication accuracy at which the master network is lost
is known as the phenotypic error threshold (Huynen et al., 1996; Reidys et al.,
1998). For infinite populations the threshold accuracy qmin depends on the av-
erage neutrality of the α-network, λα, and the superiority of α, σα, indicating
how much better the replication rate of α, rα, is with respect to the remaining
phenotypes in the population (Reidys et al., 1998; Schuster and Fontana, 1999):
qmin = ((1 − λασα)/(1 − λα)σα)1/n with σα = rα/

∑
β �=α rβxβ/(1 − xα), where xβ

is the fraction of sequences with ground state β. In the plastic case, rα is not
constant, since different sequences with α as a ground state will have different
suboptimal configurations. We replace rα by the average over such sequences in
the population.
The graphs for the plastic case always dominate those of the simple case (higher
neutrality, and hence lower threshold accuracy). Filled circles: neutral evolution
at superiority 10. Down-triangles: neutral evolution at superiority 1.5. Solid
curves are linear regressions and exponential fits. Note the near constancy of the
population neutrality in the plastic case regardless of the superiority and error
rate.
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4.4 A fitness landscape perspective

Our analysis repeatedly appeals to neutrality with respect to minimum free
energy structures. Under the simple map from genotype to minimum free
energy structure, such neutral networks are also invariant with respect to
phenotype and fitness. Plasticity adds texture to these neutral networks in
terms of both phenotype and fitness. Two sequences that share a minimum
free energy structure will have divergent structures in their remaining plastic
repertoires, and hence different fitnesses. As discussed in section 2.6, we
nevertheless continue to refer to such networks as neutral.

When populations of plastic sequences arrive at an evolutionary dead-end,
they are confined to the most neutral recesses of a neutral network. These
regions correspond to local fitness maxima under the plastic map. One might
therefore argue, that these dynamics can be solely conceived in terms of
evolution toward a local optimum. We counter that the ruggedness of the
fitness function that results from the plastic map is remarkable by virtue of
plastogenetic congruence.

The fitness peaks at which plastic populations come to rest correspond not
just to good phenotypes (that is, repertoires with a stable minimum free
energy structure close to the target), but also to regions that are mutationally
isolated. Plastogenetic congruence means that the set of genotypes with
highest fitness in a neutral network are mutationally highly-interconnected
with very small boundaries (if any) with other neutral networks.

Consider a fitness function in which a randomly chosen connected sub-network
of a neutral network was assigned high fitness relative to the rest of the net-
work. We assert that a population evolving under such a fitness function
is much less likely to be trapped by this fitness optimum than a population
evolving under our plastic fitness function. Arbitrarily chosen fitness peaks
of this kind will not suffer the mutational buffering induced by plastogenetic
congruence.

4.5 Relationship to work in protein folding

A correlation between the thermodynamic stability of a minimum free energy
structure and its mutational robustness has been observed in lattice models
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of protein folding (Vendruscolo et al., 1997; Bussemaker et al., 1997; Govin-
darajan and Goldstein, 1997; Bornberg-Bauer and Chan, 1999), and in RNA
models (Wuchty et al., 1999). “Thermodynamic stability” refers to the free
energy ∆G (Bornberg-Bauer and Chan, 1999; Govindarajan and Goldstein,
1997), the thermal stability (melting temperature) of the ground state struc-
ture (Vendruscolo et al., 1997), or the energy gap between it and the first
excited state (Bussemaker et al., 1997). We relate our findings to this body
of work in two respects.

Although plastogenetic congruence in RNA implies an analogous correlation
between thermodynamic and mutational stability, it has broader implica-
tions. The plasticity of an RNA molecule refers to alternative structures in
the vicinity of its ground state at constant temperature. (Bornberg-Bauer
and Chan (1999) use the term “plasticity” unconventionally to refer to muta-
tional (in)stability, rather than to alternative phenotypes of a single genotype
in response to the environment.) Plastogenetic congruence states that the al-
ternative structures available to a given sequence are frequently found as the
minimum free energy structures of its mutational neighbors. This indicates
which minimum free energy structures will be accessible through mutation,
and therefore goes beyond a correlation between the thermodynamic and
mutational stability of the ground state. Hence we introduce the new termi-
nology “congruence”.

Bornberg-Bauer and Chan (1999) report that neutral networks in protein
models “center around a single prototype sequence of maximum mutational
stability”. This is not true in RNA. Our evolutionary simulations and nu-
merical studies by Matt Bell (personal communication) indicate that the
RNA sequences with highest neutrality constitute extended and connected
sub-networks of neutral networks. Furthermore, gradient walks to optimize
the Boltzmann probability of the minimum free energy structure (Figure 13)
reach maximum neutrality after a dozen steps. Following this, the walks con-
tinue to improve the thermomdynamic stability of the ground state structure
while maintaining constant neutrality.
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5 ANALYTIC MODELS OF NEUTRAL CONFINEMENT

5.1 Model Assumptions

In this section, we discuss three simplified models of plastic RNA evolution.
In each, we characterize the dynamics of a plastic population in the final stage
of evolution, and derive equilibrium conditions in terms of neutrality and fit-
ness. The two assumptions that make these approaches analytically tractable
are: (1) perfect plastogenetic congruence, and (2) containment within a sin-
gle neutral network in which all sequences share the same minimum free
energy structure. By perfect plastogenetic congruence, we mean that struc-
tures accessible to a sequence through plasticity are exactly those found as
minimum free energy structures of sequences accessible through single mu-
tations. Although simulation populations typically consist of sequences from
several equally fit neutral networks, our containment assumption simplifies
the population to sequences that share a single minimum free energy struc-
ture, although their suboptimal structures may vary.

Recall that the plastic genotype-phenotype map gives rise to a much more
rugged fitness landscape than the simple map. Neutral networks of sequences
with the same minimum free energy structure no longer share the same fit-
ness. Rather, the fitness of a sequence depends directly on other structures in
its plastic repertoire. Since plastogenetic congruence ties these structures to
the minimum free energy structures of mutational neighbors, our simplifying
assumption (1) means that the fitness of a sequence becomes a function of the
phenotypes of its genetic neighbors. By extracting this brand of ruggedness
in a simpler framework, we demonstrate that the extreme genetic isolation
in RNA should come as no surprise.

Furthermore, these models provide insight into the role of mutation. We
demonstrate the that genetic isolation may be such that no amount of mu-
tation can facilitate an escape. The minimum amount of mutation necessary
to produce novel phenotypes is so great that the resulting mutants have
regressed completely from the target.
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5.2 Frequency distribution within a neutral network

Consider a population of RNA sequences with phenotypic plasticity. A se-
quence can assume a range of structures, all within an energetic neighborhood
of its minimum free energy structure. The fitness of a sequence is determined
by a weighted average of the distances between its low energy configurations
and a target structure. The assumption that plasticity gives a perfect picture
of evolutionarily adjacent structures, allows us to construe the fitness of a
sequence entirely in terms of the fitness of its mutational neighbors,

w(Si) =
∑

Sj∈N (Si)

f(d(αj
0, τ)) ·

δµ(Sj, Si)∑
Sj∈N (Si)

δµ(Sj, Si)
(7)

where Si is a sequence, α
j
0 is the minimum free energy structure of Si, N (Si)

is the mutational neighborhood of Si, d() determines structural distance be-
tween two shapes, f() is a monotonically decreasing function of structural
distance d(), and δµ() is a monotonically decreasing function of mutational
distance. This definition is analogous to equation (3) in chapter 3. Because
of perfect plastogenetic congruence, the structures that determine the fitness
of Si are the minimum free energy structures in its mutational neighborhood.
The second factor in equation (7) is analogous to the Boltzmann probability,
in that it weighs a neighboring structure with the likelihood of reaching its
sequence by mutation.

Suppose a population is concentrated on a neutral network G of relatively
high fitness. That is, all sequences in G have the same minimum free energy
structure, and most one-error mutants of these sequences that lie outside of
G have relatively much lower fitness. Let |G| be the number of sequences in
G.

We use an approach proposed by van Nimwegen et al. (1999a) in which G is
viewed as a graph. Each sequence corresponds to a node, and two nodes are
connected by an edge when the sequences they represent differ by exactly
one mutation. The degree di of a node is the number of edges that connect
it to another node in G, in other words, the number of single mutations that
preserve the minimum free energy structure. A node Si will therefore have
di one-error mutants in G, and 3n − di one-error mutants that lie outside
of G, where n is the length of sequences. Assuming perfect plastogenetic
congruence, we can approximate the fitness of an individual node Si by the
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average fitness of its one mutant neighbors. We assume fitness off of G is
relatively negligible, and therefore ignore the fitness contributions of one-
error mutants not in G. Therefore the fitness of Si is fdi + 0(3n− di) = fdi

where f is the selective value of the minimum free energy structure shared
by all sequences in G.

We can express the per generation change in the frequency distribution of
sequences in G with a system of |G| equations. For any S ∈ G,

P ′
s =

f

w̄
(Psds(1− µ) +

µ

3n

∑
t∈N (s)

Ptdt) (8)

where Ps gives the frequency of sequence S, µ gives the per sequence per
generation mutation rate, n is the length of the sequences and w̄ is the
average fitness of the population. Note that this formulation ignores the
possibility of mutations onto G from sequences outside of G.

We now translate this system of equations into a transition matrix M such
that  P ′ = M P where  P is the frequency distribution vector. Let I denote
the identity matrix; A denote the adjacency matrix where Aij = 1 if Si and
Sj are one-error mutants of each other and Aij = 0 otherwise; and D denote
the diagonal matrix of degrees with Dii = di for all i and Dij = 0 for all
i = j. Then we derive,

M = ((1− µ)I+
µ

3n
A)D. (9)

Assume there exists a unique node c such that dc > di for all i = c. Without
loss of generality, we let c = 0. Then S0 is the most neutral sequence inG with
degree d0. When µ = 0, that is, there is no mutation, then M = D which has
a leading eigenvalue of d0 and an associated eigenvector [1, 0, 0, . . . , 0]. In
the absence of mutation then, the equilibrium population is made up entirely
of S0.

In general, the equilibrium distribution is the solution  P to the eigenvalue
equation M P = λ P where λ is the leading eigenvalue of M. The resulting
distribution of sequences will reflect a mutation-selection balance. Because
we can break our transition matrix into a diagonalizable matrix and a small
remainder term,

M = D+ µ(
1

3n
A − I)D = [M0] + µ[M1], (10)
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Figure 18: Network distributions. The equilibrium distributions for a non-
plastic population (dotted) and a plastic population (solid). In network (a) (left
ordinate), node 1 has much higher neutrality than all other nodes: d1 = 19 and
dn = 1 for n = 2 . . . 20. In network (b) (right ordinate), nodes 1-10 form a high
neutrality subnetwork: dn = 10 for n = 1 . . . 10 and dn = 1 for n = 11 . . . 20.

we can use perturbation theory to get a first-order approximation of the
equilibrium distribution for small µ. We find

P̂k =




1
1+µ

(
1 + µ

(
1− d0

3n

∑|G|
k=1

A0k

d0−dk

))
if k = 0,

µ
1+µ

(
d0

3n(d0−dk)

)
if A0k = 1,

0 otherwise.

(11)

Recall that Aij indicates whether sequences Si and Sj differ by a single
mutation. According to this approximation, the equilibrium distribution
is made up of the most connected sequence S0 and its one-error mutants.
As µ decreases, the proportion of non-S0 sequences shrinks. Because the
denominator 3n(d0 − dk) depends on dk, the frequency of a non-S0 sequence
is an increasing function of its degree. Even sequences with degree close to d0
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will appear at low frequency. For example, consider an Sk where dk = d0 − 1
and the maximal µ = 0.1. Then P̂k = 0.03d0

n
which is very small for large n.

For two simple networks, we compare the equilibrium distribution of neutral-
ity predicted by our plastic model to that of the original non-plastic model
(van Nimwegen et al., 1999a). Both networks contain 20 nodes (sequences).
In the first, node 0 is connected to all 19 other nodes, and all other nodes
are only connected to 0. In the second, nodes 0-10 are connected to all other
nodes while nodes 11-20 are only connected to nodes 0-10. Figure 18 graphs
the equilibrium distributions for non-plastic (dotted) and plastic (solid) pop-
ulations. The plastic populations are much more concentrated on the nodes
with highest degree.

5.3 Three-Tiered Model: Exploration and Error Thresholds

Premised on the previous model, we turn to the role of mutation. Can mu-
tation enable the population to avoid the evolutionary dead-end in the first
place? Intuition suggests that an increased mutation rate might enable pop-
ulations to search beyond their immediate genetic vicinity, into regions where
novel phenotypes exist. We show here, however, that for certain parameter
values there is no mutation rate that provides such an escape. Under low
mutation rates, populations, like those in our simulations, are confined in an
“exploration catastrophe,” yet under high mutation rates, populations are
in an “error catastrophe” where they have slipped away completely from the
target.

Again consider a population that has reached a relatively high fitness neutral
network G. We break down the population into three distinct classes, two
within the neutral network and one representing the rest of sequence space.
For any sequence Si ∈ G, the one-error mutants of Si that are also in G are
called its neutral neighbors, and the number of such neighbors is called di, the
degree of Si. Assume that the neutral network contains a single sequence S0

with maximal connectivity d0 within G, and the degree of all other sequences
in G is d1. That is, for any Si ∈ G where Si = S0, di = d1 < d0.

We define three classes of sequences: C0 is just the sequence S0, C1 consists
of the sequences in G − {S0}, and C2 are all sequences not contained in G.
Changes in the frequency distribution among these classes results from a
combination of mutation and natural selection.
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Let µ be the probability of mutation per sequence per generation. Sequences
in C0 mutate to sequences in C1 at a rate µ d0

3n
, where 3n is the number of

possible one-error mutants of a sequence. Mutations take sequences in C0

off of the network, into C2 at a rate µ
(
1− d0

3n

)
. Likewise the mutation rates

from C1 to itself and to C2 are µ d1

3n
and µ

(
1− d1

3n

)
, respectively. We ignore

back mutation of sequences in C1 to C0 and of sequences in C2 to either C0

or C1. We discuss the implications of this assumption below.

The sequences in this model are again endowed with perfect plastogenetic
congruence as described in the previous section. Every sequence has a se-
lective value which is a measure of the similarity between the sequence’s
minimum free energy structure and a pre-determined target structure. Se-
quences within G have a selective value of 1 while sequences off G have a
relative selective value of f . The relative fitness of a sequence in class Ci is
wi, an average of the selective values of its one-error mutants:

w0 =
d0

3n
+

(
1− d0

3n

)
f (12)

w1 =
d1

3n
+

(
1− d1

3n

)
f (13)

w2 = f (14)

Recall that di

3n
(i = 1, 2) is, for any sequence in Ci, the fraction of its one-

error mutants that also lie within G. We construct a transition matrix T
that incorporates the effects of mutation and selection. If  P = (P1, P2, P3)

describes the occupancy of the three classes at some time, then  P ′ = T P
gives the frequency distribution in the next generation where T is as follows:

T =


 w0(1− µ) 0 0

w0µ
d0

3n
w1(1− µ) + w1µ

d1

3n
0

w0µ(1− d0

3n
) w1µ(1− d1

3n
) w2


 (15)

The leading eigenvector of T provides the population equilibrium distribu-
tion. The eigensystem of T is given by

λ0

λ1

λ2


 =


 w0(1− µ)
w1

(
1− µ

(
1− d1

3n

))
w2


 (16)
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and

 P0 =

(
w0(1−µ)−w1(1−µ(1− d1

3n))
w0µ

d0
3n

, 1,
w1(1− d0

3n −µ(1− d1
3n))−w0(1− d0

3n −µ(1− d0
3n))

−w0
d0
3n (1−µ)+w2

)
(17)

 P1 =

(
0,

w1(1−µ(1− d1
3n))−w2

w1µ(1− d1
3n)

, 1

)
(18)

 P2 = (0, 0, 1) (19)

The subscripts of the eigenvalues and eigenvectors refer to the class which
dominates the distribution, and not to their magnitudes. As parameter values
vary, so does the leading eigenvalue λ = max(λ0, λ1, λ2).

We seek parameter ranges that allow the population to explore phenotype
space. A population concentrated in C0 will have mostly neutral mutants,
and therefore will be unlikely to find a higher fitness phenotype through
mutation. We call this an exploration catastrophe. A population lost in C2

has regressed from the higher fitness network. This is the error catastrophe.
C1 on the other hand is a high fitness platform from which a population can
explore phenotype space for better options. For these reasons, we say that
a population with a high concentration of C1 is below the error threshold
which moves the population off of G, and above the exploration threshold
which contains the population in a highly inward-looking subset of G.

In Figure 19, we display equilibrium distributions for various parameter
ranges. In every case, we set the length of the sequences to n = 100. Each
right-hand graph shows the concentration of C0 labelled (0), C1 labelled (1),
and C2 labelled (2). Populations dominated by C2 are above the error thresh-
old while populations dominated by C0 are below the exploration threshold.
On the left we graph the eigenvalues. The topmost plane at each point is the
leading eigenvalue. Its associated eigenvector is that which determined the
frequencies in the opposing graph. Light grey, medium grey and dark grey
represent λ0, λ1 and λ2 respectively.

The center distribution assumes neutralities of d0

3n
= 0.45 for C0 and

d1

3n
= 0.3

for C1. These are the values we obtain from actual simulation. The equilib-
rium distribution suggests that for the low values of µ we use in simulations,
the population should be trapped on C0 in an exploration catastrophe. This is
consistent with the neutral confinement we find for low-plasticity sequences.
Below we discuss these distributions further.
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Figure 19: Eigenvalues (left graphs) and equilibrium distributions (right
graphs). Given values for µ and f , we graph λ0, λ1 and λ2 in light, medium and
dark grey, respectively, and equilibrium concentrations for C0, C1 and C2 labelled
as (0), (1), and (2), respectively.
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5.4 Neutrality in the sub-network C0

In simulation, RNA populations evolve through neutral networks that are
much more complex than the idealized C0 and C1 of the three-tiered model.
Populations move among highly inter-connected sub-networks of multiple
structurally similar neutral networks. In this extension of the three-tiered
model, we still assume the population converges on a single neutral network
G, but attempt a more realistic conception of the structure of G.

Suppose now that C0 is enlarged to a sub-network of the neutral network G in
which all |C0| sequences have degree d0. As above, the remaining sequences
in G occupy C1 and share degree d1. We define two new parameters χ0 and
χ1 which are the fraction of neutral mutations that remain within C0 and C1

respectively. Then 1−χ0 is the fraction of neutral mutations from C0 to C1,
and 1− χ1 is the fraction from C1 to C0.

Mutation operates according to the following table of mutation rates. The
entry in the Ci row and Cj column is the probability that an individual in
Ci mutates into Cj in a given generation. We will use these rates in the
transition matrix.

Destination
C0 C1 C2

C0 χ0µ
d0

3n
(1− χ0)µ

d0

3n
µ

(
1− d0

3n

)
Origin C1 (1− χ1)µ

d1

3n
χ1µ

d1

3n
µ

(
1− d1

3n

)
C2 0 0 µ

In this case, we also consider mutations from C1 into C0, but again we ignore
mutations from C2 into G.

As in the original formulation, fitness is the weighted average of the selective
values of the minimum free energy structures of all one-error mutants of a
sequence. For any sequence in C0 or C1 the total number of one-error mutants
that are also in G is still d0 or d1 respectively. Therefore the extension of C0

to a sub-network of G does not alter the fitnesses of the three classes.

Again we construct a transition matrix that describes flow between classes.
In the following matrix µij, 0 ≤ i, j ≤ 2, is the mutation rate from Ci to Cj
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as given in the mutation table above.

T′ =


w0(1− µ) + w0µ00 w1µ10 0

w0µ01 w1(1− µ) + w1µ11 0
w0µ02 w1µ12 w2


 (20)

Though it still only involves a quadratic and a linear term, the eigensystem
of T′ looks more complicated than that of T, because T′ is not triangular,
and we have added the new parameters χ0 and χ1. In the following analysis,
we assume χ0 = χ1 = χ, and explore the affects of χ and µ on the predicted
equilibrium distributions.

Figure 20 depicts equilibrium distributions for f = 0.9, 0.5, 0.1 from left to
right. As χ increases, the equilibrium concentration of C0 increases slightly
and the frequency of C1 decreases, making exploration even more difficult.
For very larger χ, the frequency of C1 remains negligible for all µ. See, for
example Figure 21.

The lower eigenvalue graphs reveal that under the extended model, popu-
lations are always in either the λ0 phase or the λ2 phase. In the previous
model, we found three distinct regimes, each dominated by a unique eigen-
vector. This discrepancy arises from the role of mutation. In the first model
recall that there is no back mutation from C2 into C0 and C1, and no back
mutation from C1 to C0. In the second model, we add mutation from C1

to C0. A model that includes mutation in all directions among three classes
would yield a single maximum eigenvector over all of parameter space. In
the first model, we use the transitions between leading eigenvalues to mark
the phase transitions between regimes dominated by different subsets of the
population. In the current model and the hypothetical all-mutations model,
however, transitions between such phases in the frequency distribution are
difficult to identify. One innovative approach to this problem considers finite-
population dynamics in a simplex (van Nimwegen et al., 1999b). Here a
qualitative perspective suggests that there are parameter values for which
populations go directly from an exploration catastrophe, confined to C0, to
an exploration catastrophe, diffusing in C2.

5.5 Exploration and Error Catastrophes

In both versions of the model we find parameter ranges for which the popu-



L. Ancel and W. Fontana: Plasticity and Evolvability 62

lation is confined to C0 and therefore is unlikely to find phenotypic novelty
through mutation (exploration catastrophe). For given values of f , n and χ
we can identify a threshold µ below which the population is in an exploration
catastrophe. Generally, the exploration threshold decreases as f increases,
and is a slightly monotonically increasing function of χ. This implies that as
the size and interconnectivity of C0 grows, so does the likelihood of reaching
an evolutionary dead-end.
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Figure 20: Extended model equilibrium distributions and eigenvalues.
Given values for µ and χ, these display equilibrium concentrations for C0, C1 and
C2 labelled as (0), (1) and (2), respectively. The bottom row gives eigenvalues λ0

in light grey, λ1 in medium grey and λ2 in dark grey. All graphs assume n = 100,
d0 = 135, and d1 = 95. From left to right, f = 0.9, 0.5, 0.1. Note that the range
for µ varies across graphs.

There also exist parameter ranges for which the population is lost in C2. For
specified f , n and χ we can find a threshold µ above which the population
reaches such an error catastrophe. Intuitively, as f – the relative fitness of
C2 – increases, the error threshold decreases.
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These transitions are formally identical to the well-known genotypic error
threshold, denoting the mutation rate at which a genotype with optimal
phenotype (“master genotype”) is lost (Eigen, 1971), and the phenotypic
error threshold, denoting the mutation rate at which the optimal phenotype
is no longer maintained in the population (Huynen et al., 1996; Reidys et al.,
1998).
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Figure 21: Equilibrium distribution for χ = 0.9. For low µ, the population
is confined to C0. Around µ = 0.25, the population moves off C0 into C2, with
virtually no occupancy of C1.

In the simple version of our model, the exploration threshold corresponds to
the genotypic error threshold in which there is a single master sequence with
superiority approximately w0

d0
3n

w1+(1− d0
3n)w2

= d0(1−f)+3nf
d1
3n

d0(1−f)+3nf
. The genotypic er-

ror threshold divides the low mutation rates at which the master sequence is
preserved at equilibrium from the high mutation rates at which the master
class is catastrophically lost. The exploration threshold similarly divides the
low mutation rates at which the population is confined to C0 from the high
mutation rates at which the population reaches C1.

What we call the error catastrophe in our simple model is equivalent to a
phenotypic error threshold where the mean fraction of neutral neighbors is
approximately ν ∼ d1

3n
. In our extended model both the exploration catas-
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trophe and the error catastrophe correspond to a phenotypic error threshold
because C0 becomes a neutral network rather than a single sequence. In-
creasing the size of C0, i.e. increasing the neutrality of C0, postpones the
exploration threshold. A larger C0 entails extended ranges of mutation rates
at which the population will be in an exploration catastrophe. Consequently
the regions of parameter space in which the population goes directly from an
exploration catastrophe into an error catastrophe also increase.

6 MODULARITY

Modularity is a hallmark of biological organization and an important source
of evolutionary innovation (Bonner, 1988; Wagner and Altenberg, 1996; Hartwell
et al., 1999). Once it exists, modularity constitutes an obvious advantage by
enabling the recombination of stable sub-units into novel phenotypes. Yet,
the origin of modules remains a problem for evolutionary biology, even in the
case of the most basic protein or RNA domains (Westhof et al., 1996). Here
we offer a possible origin for such organization.

In section 3, we demonstrated that plasticity is rapidly reduced by natural
selection under a biophysically motivated fitness function that weighs the
selective value of each shape in the plastic repertoire of a sequence by its
Boltzmann probability. The reduction of plasticity has, in addition to genetic
canalization, a further side-effect which is best characterized as modularity.

The point we are making in this section is, in essence, yet another charac-
terization of plastogenetic congruence in RNA: structural units that appear
autonomous from an environmental and developmental perspective appear
at the same time autonomous from a genetic perspective. Here the environ-
ment refers to temperature, and development refers to the kinetic process
by which an RNA sequence folds from an open chain into its minimum free
energy structure. We show that the evolutionarily reduction of plasticity
crystallizes RNA structures into environmentally, developmentally, and ge-
netically autonomous units.

6.1 Norms of Reaction - Melting Behavior

We view plasticity as a stochastic choice among alternative structural states
of a biopolymer in contact with a heat bath at constant temperature. Biolo-
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gists often characterize the plasticity of a genotype using a norm of reaction.
This is typically a map from some parameter in the environment to a pheno-
type. The RNA plastic repertoires deviate from this standard framework in
that the relevant environmental input – brownian motion in a heat bath – is
not easily scaled on an axis. In this section we use a more conventional norm
of reaction: a map from temperature to minimum free energy structure. The
suite of minimum free energy structures as they change with temperature is
known in biophysics as a “melting” profile. Figures 22 and 23 compare the
(computed) melting profile of the sequences from Figure 15 at three levels.

First we compute the melting series, that is, the suite of minimum free energy
structures in the temperature range from 0◦ C to 100◦ C. Second we calculate
the heat capacity (at constant pressure), labeledH in Figures 22 and 23, from
the Gibbs free energy, G, of the ensemble of structural states by means of
the partition function Z (McCaskill, 1990):

H = −T
∂2G

∂T 2
with G = −RT logZ, (21)

where R the universal gas constant. H can be measured empirically by dif-
ferential scanning calorimetry (DSC). DSC is widely-used to determine the
thermophysical properties of materials. As a sample is heated over a range of
temperature, the material starts to undergo a phase change that releases or
absorbs heat. The calorimeter measures the heat flow (enthalpy change) into
or out of the sample undergoing the phase change, thereby providing data
from which the heat capacity can be quantitatively recovered. Our third
perspective on structural transitions are the Boltzmann probabilities as a
function of temperature for each minimum free energy structure appearing
in the melting series. These show that the peaks in H correspond to ma-
jor structural phase transitions occurring at the temperature at which the
Boltzmann probabilities of the outgoing and incoming structures intersect.

In Figure 22, we compare the melting profile for the three sequences on the
left of Figure 15. Recall that these sequences share a common minimum free
energy structure at 37◦ C. The melting behavior of the inverse folded sequence
is markedly more disorderly than that of the neutrally evolved and canalized
sequences. Its melting series consists of as many as 10 shapes. The relevant
observation, however, is the absence of structural features that rearrange
locally , particularly at low temperatures (when there is more structure). In
other words, temperature variations induce global refoldings of the shape.
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Figure 22: Melting behavior I. Left of each graph are the minimum free energy
structures in the temperature range 0◦ − 100◦ C for three sequences obtained by
inverse folding, neutral evolution and canalization on the same structure (Figure
15 left). The graphs trace the temperature dependence of the specific heat (H)
and the Boltzmann probabilities of the individual structures in the melting series.
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Furthermore, each structure in the melting series remains stable only over
a small temperature range. As a consequence, the heat capacity consists of
several small and closely-occurring humps.

The canalized sequence, in contrast, has a highly localized melting behav-
ior. We easily identify structural features that melt individually at distinct
temperatures without affecting the integrity of other parts of the structure.
Often, but not always, such structural units coincide with components in the
sense of Figure 1. The structure of the canalized sequence is stable up to
61◦ C, when the large T-like feature at the 5′ end disappears almost entirely
in a single step. Remarkably, the other feature at the 3′ end is not affected,
despite a new open sequence segment that is now available for interaction.
The 3′ feature melts at its own transition temperature of 89◦ C in a single
step. The major transitions from #1 to #2 and from #3 to #4 are well
separated and marked by two sharp peaks in the heat capacity.

The neutrally evolved sequence occupies a middle ground. It has fewer transi-
tions and more highly preserved structural similarity across transitions than
the inverse folded sequence, but to a lesser extent than the canalized se-
quence. It departs significantly from the canalized sequence in its lack of
independently melting features. For example, the transition from #1 to #2,
involving the hairpin structure at the 3′ end, neither melts this feature com-
pletely nor does it preserve some its subfeatures. The same holds for the
structure portion at the 5′ end.

This comparative analysis of melting behaviors suggests one facet of “mod-
ularity”: the thermophysical independence of a structural trait from other
traits over a wide temperature range. Note that this is a quite different
notion of “unit” than what is obtained from parsing a shape into structural
units based on morphology alone. In fact, all three sequences considered have
the same morphology at 37◦ C, but only the canalized sequence is modular
in the sense of thermophysically autonomous units.

Figure 23 illustrates the same points. Note, however, that the modules evi-
denced in Figure 22 are larger structural assemblies than in the case of Figure
23.
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6.2 Kinetics - Modularity and Funnels

A recent stochastic model of kinetic RNA folding at elementary step resolu-
tion permits the study of folding pathways (Flamm et al., 1999). The folding
kinetics of our three sequences provides a further perspective on modular-
ity. The folding pathways of RNA play a role analogous to developmental
pathways of organisms.

The tree graphs in Figure 24 represent different organizations of the energy
landscape on which the folding process occurs. For each of our three se-
quences on the left of Figure 15 the portion of the energy landscape shown
comprises the 50 lowest local free energy minima (courtesy Christoph Flamm,
University of Vienna). A local minimum corresponds to a leaf, and leaves are
grouped into basins which are further linked to one another in a hierarchical
fashion. The heights of internal nodes represent energy barriers connecting
two local minima or their basins (Flamm et al., 1999). In other words, the
height of the lowest internal node connecting two leaves represents the en-
ergetic requirement of folding from one structure into the other. The lower
right graph of Figure 24 shows the distribution of folding times (first passage
times from the unfolded sequence to the native structure) for these sequences.

The differences are striking. Not only does the canalized sequence fold much
more rapidly than the others, but it folds predominantly along one well-
defined pathway, and has, therefore, one dominant time scale. Its energy
surface resembles a funnel (Bryngelson and Wolynes, 1987; Dill and Chan,
1997), suggesting that individual structural units fold independently from
one another. Sequence segments of one unit are unlikely to crossfold with
segments of other units, which would cause traps delaying the formation of
the native structure. (There is a folding trap [not shown], visited with low
probability, that accounts for the tail of the distribution. It is due to an
early diffusion among several high energy shapes until the molecule drops
into the funnel and folds.) In contrast, the inverse folded sequence has an
energy landscape without much structure, as well as high barriers separating
individual states. The sequence can misfold in many ways, giving rise to a
broad distribution of folding times. The neutrally evolved sequence exhibits
two funnels, one of which leads to a misfold.
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Figure 24: Folding Kinetics and Energy Landscapes. The graph on the
lower right shows the folding time distributions for the three classes of sequences
shown on the left of Figure 15, based on a stochastic model of kinetic folding whose
elementary moves consist in the making, breaking and shifting of a single base pair
(Flamm et al., 1999). (1), (2) and (3) are the inverse folded, neutrally evolved and
canalized sequences respectively. The trees depict the energy landscape associated
with each sequence in terms of the hierarchical organization of barriers separating
individual states and their basins. The distance from the root (top) of the tree
represents the free energy.
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6.3 Context Insensitivity

We used the melting behavior and the organization of the energy landscape to
identify modularity with respect to temperature change and folding dynam-
ics. We next turn to modularity as identified through genetic perturbation.
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Figure 25: Context insensitivity of Modules. The sequence segments under-
lying the 5′ structural component (A) and the 3′ component (B) of the shapes on
the left and right of Figure 15, respectively, are embedded in random sequence
contexts. The chart shows the frequency with which the segment retained its orig-
inal structure if it originated in an inverse folded, neutrally evolved and canalized
sequence.

Point mutations cause only local disruption (if any) to the minimum free
energy structure of a low plasticity sequence. A thermodynamically well-
defined stacking region is unlikely to unfold completely when a point muta-
tion knocks out a single base pair, while a marginally stable stacking region
is likely to unwind, leading to a global rearrangement of the structure. Mod-
ules buffer against extensive rearrangements. This aspect of modularity is
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similar to low pleiotropy in an organismal context (Wagner and Altenberg,
1996).

Perhaps the most defining property of modules is the maintenance of their
structural integrity across changing genetic contexts. We slice from each
sequence the segment sτ that folds into a particular structural unit τ . We
then paste to the left and right of sτ random segments half its size, and ask
whether sτ still folds into τ despite the new genetic embedding. The chart in
Figure 25 shows the fraction of 1000 such foldings that maintain τ . Indeed,
canalized sequences have structural components that are much more context
independent than inverse folded sequences. In a few cases, neutrally evolved
sequences withstand contextual modification as well as the canalized ones.

To summarize, plastogenetic congruence states that plasticity (the environ-
mental variance of phenotype) mirrors variability (the mutational sensitivity
of phenotype). This section on modularity, in essence, further elaborates
this theme. Thermodynamic and kinetic autonomy of units, as manifest in
the norms of reaction to temperature and the organization of the energy
landscape, correlates to the autonomy of those same units with respect to
changing genetic contexts. A computational analysis of naturally occurring
sequences suggests that functionally important structures have heightened
context insensitivity (Wagner and Stadler, 1999). Recall, however, that in
our simulations sequences were never selected for modularity, only for re-
duced plasticity. Direct selection pressures for modularity may exist, but
this analysis demonstrates that the emergence of modularity does not re-
quire them. Modularity arises, like genetic canalization, as a by-product of
environmental canalization.

7 DISCUSSION

Biological evolution changes not only the frequencies of extant phenotypes,
but the phenotypes themselves. A population genetic analysis of the fate of
innovations under natural selection provides only a partial story that must
be integrated with a theory of phenotypic innovations (Buss, 1987).

We turn our attention to a simple but non-trivial evolvable object: an
RNA molecule. RNA provides both a theoretically and empirically well-
characterized high-dimensional relation between genotype (sequence) and
phenotype (structure). The main algorithms for RNA folding were developed
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twenty years ago (Waterman and Smith, 1978; Nussinov et al., 1978; Zuker
and Stiegler, 1981), not with the present questions in mind, but rather as a
tool to assist experimentalists. This divergence of applications suggests that
inscription errors, (that is, the construction of models which predetermine
the desired output) are less likely here than for genotype-phenotype models
constructed with particular definitions of epistasis, plasticity or modularity
in mind.

Recent advances in RNA folding (McCaskill, 1990; Wuchty et al., 1999;
Flamm et al., 1999) enable us to introduce and analyze a form of environment-
gene interaction which we call plasticity. The result is a powerful model
system in which concepts like plasticity, evolvability, epistasis and modular-
ity not only can be precisely defined and statistically measured, but reveal
simultaneous and profoundly non-independent effects of natural selection.
Although these concepts were introduced in the study of organismal evolu-
tion, we demonstrate that they apply to the molecular domain as well, and
are optimistic that lessons from RNA may, in turn, provide robust insight.

The secondary structure into which an RNA sequence folds is determined
not by the primary sequence alone, but also by environmental inputs such as
temperature and the presence of other potentially interacting molecules. As
a surrogate for such environmental factors, we map a sequence to a reper-
toire of its thermodynamically most stable structures. We assume that the
Boltzmann coefficient - a variable reflecting the thermodynamic stability of
a structure relative to all other structures within the configuration space of
a sequence - is proportional to the time that sequence would spend in the
given structure under a heterogeneous environment.

The most striking outcome of our simulations is the dramatic loss of vari-
ability that accompanies the evolutionary reduction of diversity in the plas-
tic repertoires. Recall that variability is the potential of a population of
sequences to innovate phenotypically. We gain a deeper understanding of
the loss of variability through two lines of inquiry. First we construct the
causal bridge from the assumptions of our model - point mutation, a plastic
genotype-phenotype map, and fitness based on the average structural dis-
tance to target over all structures in a plastic repertoire - to the observed
evolutionary dead-end. Second, we characterize in as many dimensions as
possible the typical genotype and phenotype distribution for a steady state
population evolved under the plastic map. These two objectives are highly
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interrelated. The link between plasticity and variability is shown by a close
look at the evolving distribution of sequences and their shape repertoires.

The loss of variability stems from two simple observations:

1. The more variation in the plastic repertoire, the less time a sequence
spends in its best structure. In this way, plasticity is costly, and is
ultimately reduced by natural selection in constant environments.

2. There is a significant overlap between the shapes in the plastic reper-
toire of a sequence and the set of minimum free energy structures of
genetically proximate sequences, i.e. of sequences that differ from it by
one mutation. We call this property plastogenetic congruence.

The first observation is a straightforward consequence of our (biophysically
motivated) plastic fitness function. We verify the second, which rests on
the intuition that a point mutation can tip the the folding landscape of
a sequence in favor of any low-energy structure, through several statisti-
cal assays. Phenocopies - environmentally triggered traits that correspond
to mutant phenotypes - provide evidence for the generality of plastogenetic
congruence in nature. The effects of high temperature on moth antenna
morphology (Goldschmidt, 1940), of ether on Drosophila melanogaster tho-
racic development (Gibson and Hogness, 1996; Waddington, 1942) and of
gold foil on the fibular crest in birds (Müller, 1990) among many other en-
vironmental perturbations have been shown to mimick known mutants or
ancestral morphologies (Stearns, 1993; Schlichting and Pigliucci, 1998). Be-
cause the alignment between environmental variability (plasticity) and ge-
netic variablity has met the skepticism of evolutionary geneticists, it is not
well-integrated into mainstream evolutionary thinking. Our example of the
plastic RNA map illustrates its relevance to evolutionary theory, and instan-
tiates the claim that plastogenetic congruence is a fairly ubiquitous property
of genotype-phenotype relationships.

Under the conditions studied here, natural selection reduces plasticity. Plas-
togenetic congruence then implies that a drop in diversity in the plastic reper-
toire entails a drop in the diversity of minimum free energy structures in the
one-error neighborhood (the set of one-error mutants of a given sequence).
Natural selection on plasticity indirectly curtails phenotypic novelty accessi-
ble by mutation, and hence the potential to evolve.
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Through idealized models of a plastic population, we formalize this expla-
nation for the decline in evolvability. These models become analytically
tractable under the assumption that the plastogenetic congruence is perfect.
In other words, the plastic repertoire for any given sequence is exactly the
set of minimum free energy structures in the one-error neighborhood. As the
fraction of one-error mutants with identical minimum free energy structure
(neutrality) increases, the ability to evolve decreases.

The models formally connect mutation rate, the topography of phenotype
space and evolvability. Assuming that the population has reached a neutral
network relatively close to the target shape, we identify three phases of equi-
librium distributions: the exploration catastrophe, when the population is
concentrated in a highly neutral region and so cannot access phenotypic nov-
elty; the error catastrophe, when the population falls off the neutral network
into the rest of genotype space with on average much lower fitness; and the
ideal phase, when the population remains in regions of the neutral network
that have mutational access to the rest of phenotype space. The fate of the
population as mutation increases depends on the structure of the neutral
network. For some, increasing mutation rate takes the population from the
exploration catastrophe through the ideal phase to the error catastrophe.
For many neutral networks, however, the exploration threshold exceeds the
error threshold. Upon increasing mutation rate, a population goes immedi-
ately from an exploration catastrophe to an error catastrophe. Simulation
suggests that this is the predicament of our steady state RNA populations
under the plastic map.

Plastogenetic congruence is a robust statistical feature of the RNA folding
map from sequences to secondary structures with broad population genetic
implications. In particular, it instantiates the hypothesis put forward by
Wagner et al. (1997) that genetic canalization – buffering against phenotypic
effects of mutation – occurs as a byproduct of environmental canalization –
the evolution of resilience to environmental perturbation.

In meeting the second objective, a characterization of the phenotypic con-
sequences of natural selection, we discovered a second, equally remarkable
byproduct of environmental canalization: modularity. By modules we do not
mean a syntactical property of structures (that is trivial in RNA), but rather
autonomous components that maintain their structural integrity across a
broad range of environmental and genetic contexts, and that lose integrity
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through sudden and discrete steps without affecting the remaining struc-
ture. Modularity manifests itself as a resistance to sustained environmental
or genetic perturbation, and the dissolution of modules translates into sharp
and well separated phase transitions. In section 6, we compare thermophys-
ical, genetic and kinetic aspects of modularity across sequences that were
generated by different processes but share the same minimum free energy
structure. Modularity appears thermophysically as distinct melting temper-
atures of structural components that vanish upon melting, leaving an open
chain segment, rather than a different structural arrangement. Modularity
appears kinetically as a single primary folding funnel over the configurational
landscape of a sequence. There is little probability of misfolding because the
folding of a modular component does not interfere with the folding of other
components. Modularity appears genetically as cassette-like behavior, by
which modular structural components have a markedly increased probability
of maintaining their integrity if transplanted into different sequence contexts.
This agrees with the principles of RNA architecture discovered through recent
crystallizations of catalytic RNAs (e.g., Cech et al. (1994); for an overview
see Westhof et al. (1996)).

Modularity is both a manifestation of evolutionary lock-in, and provides
the basic tool for escaping it. The evolutionary stability of modules makes
them, in conjunction with their context-insensitivity (transposability), nat-
ural building blocks for constructing novelty at a higher combinatorial level
(Wagner and Altenberg, 1996). The shift towards a combinatorics of modular
elements appears to be less of a convenient ad hoc innovation in evolutionary
process than the only route left, once it arises as a byproduct of environmen-
tal canalization in a constant environment.

Throughout this work, we hold the temperature and target shape constant,
and find an intuitive evolutionary loss of plasticity and some surprising cor-
rollaries. What happens, though, when the environment is not constant? In
particular, what conditions favor the maintenance of plasticity? We hope to
analyze several modes of environmental variability: temperature heterogene-
ity, target fluctuations and joint folds with co-occuring molecules.
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