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Understanding which phenotypes are accessible from which genotypes is fundamental for
understanding the evolutionary process. This notion of acessibility can be used to define a
relation of nearness among phenotypes, independently of their similarity. Because of
neutrality, phenotypes denote equivalence classes of genotypes. The definition of
neighborhood relations among phenotypes relies, therefore, on the statistics of neighborhood
relations among equivalence classes of genotypes in genotype space. The folding of RNA
sequences (genotypes) into secondary structures (phenotypes) is an ideal case to implement
these concepts. We study the extent to which the folding of RNA sequences induces a
‘‘statistical topology’’ on the set of minimum free energy secondary structures. The resulting
nearness relation suggests a notion of ‘‘continuous’’ structure transformation. We can, then,
rationalize major transitions in evolutionary trajectories at the level of RNA structures by
identifying those transformations which are irreducibly discontinuous. This is shown by
means of computer simulations. The statistical topology organizing the set of RNA shapes
explains why neutral drift in sequence space plays a key role in evolutionary optimization.
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1. Introduction

Molecular genetics views the course of evolution
as a lineage of genotypes, while paleontology
sees a lineage of phenotypes as manifested in the
fossil record. The problem is to understand how
the two are related. There is widespread
agreement that the temporal succession of
phenotypes reflects the selective boundary
conditions operating during the evolutionary
process. In this context the notion of ‘‘fitness’’
proved useful to reason about the conditions
under which a given mutant can invade a
population. However, some would contend that

an evolutionary history also reflects the vari-
ational constraints which are intrinsic to an
evolving entity. The term ‘‘variational con-
straints’’ is used to collectively denote causes
which channel evolution in fitness-independent
ways. ‘‘Fitness’’ is a notion which emphasizes the
fate of a genotype mediated by the reproductive
success of its phenotype in a given demographic
and environmental context, while variational
constraints point at the fact that not all possible
phenotypes are equally accessible (or accessible
at all) through variation of a given genotype.
When focussing on the variational process, the
objective of understanding successions of evol-
utionary innovations becomes one of explaining*Author to whom correspondence should be addressed.
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how each innovation affects the potential for
further evolution (Buss, 1987). This requires
reasoning about the ‘‘evolutionary potential’’ of
an evolving entity. The primary theoretical
difficulty derives from finding adequate represen-
tations of phenotypes, and a model of how they
are generated from genotypes.

In the present paper we pursue these issues in
the context of a very special phenotype and
genotype-to-phenotype map. We show how a
rather obvious concept of ‘‘phenotypic nearness’’
induces a meaningful topology on the set of
possible phenotypes. This topology enables us to
understand some key features of evolutionary
trajectories as observed, for example, in com-
puter experiments. Extensions to in vitro
evolution appear feasible and straightforward.

Seen from a wider perspective, our contri-
bution is limited in several regards. First, we are
concerned with the simplest relevant (and the
only currently available) genotype–phenotype
mapping we know of: RNA folding. The
situation is extreme in that we are dealing with
a single molecule which can play both parts in
the game, being simultaneously genotype and
phenotype. An RNA molecule is a sequence that
can be replicated. By folding back on itself it
forms a shape which is the target of selection
(Spiegelman, 1971). Furthermore, evolution is
here reduced to the simplest case: independent
(asexual) replication in a constant environment.
Accordingly, we shall not be concerned with
networks of interacting molecules, but rather
focus on the problem of how individual RNA
shapes evolve within a population under
selection for a specific target shape. Understand-
ing the ‘‘evolutionary potential’’ of an evolving
entity may certainly be more interesting and
daunting for complex functional organizations,
such as cells or multicellular organisms. Never-
theless, we believe that the RNA case is
fundamental and at least of heuristic interest in
thinking about the bigger picture, because it
combines conceptual simplicity with realism and
experimental accessibility. Second, our present
study is mostly a numerical investigation of the

properties of RNA folding as captured by
present day computational techniques and
empirical parameters. The level of molecular
shape we are concerned with is known as the
secondary structure of RNA. It represents a
biologically meaningful and widely used notion
of structure which can be predicted from
sequences by fast algorithms. Our work is,
therefore, intermediate in abstraction: it approxi-
mates an empirical situation, while aiming at
generally valid regularities which may serve as
axioms for more abstract mathematical models
[see, for example Reidys et al. (1997)].

2. Generic Properties of Folding

The term ‘‘folding’’ is used here to denote a
surjection f :S � a from the set S of all
sequences of fixed length over the AUGC-alpha-
bet onto the set a of all minimum free energy
(mfe) secondary structures for that length. The
map is established implicitly by a state-of-the-art
folding algorithm based on thermodynamic data
(Hofacker et al., 1994; Jaeger et al., 1989; Zuker
& Stiegler, 1981). In past work we have found
three generic properties of the RNA folding map
(Schuster et al., 1994). They are surveyed in this
paragraph, since they are of immediate interest
in the context of the current study. By ‘‘generic
properties’’ we mean statistically robust features
obtained by folding large samples of sequences.

The folding map is many-to-one, reflecting
sequence redundancy of structures.

Property 1 (‘‘frequent structures’’) is a
statement about the size of equivalence classes of
sequences with respect to structure: some
structures occur significantly more frequently
than others. The property of being ‘‘frequent’’ is
made more precise by the observation that in the
limit of long chains the fraction of such
structures tends to zero (their number grows
nevertheless exponentially), while the fraction of
sequences folding into them tends to one
(Grüner et al., 1996a)*. The remaining proper-
ties hold only for frequent structures.

Property 2 (‘‘neutral networks’’) is a statement
about the connectivity within an equivalence
class: Two sequences in a class are connected by
paths of sequences within the same class which
differ by one or two point mutations (Schuster

*A particular definition of ‘‘frequent’’ is given by the
notion of ‘‘common’’ (Schuster, 1997): a structure is
common, when it is formed by more sequences than the
average, ((all sequences)/((all structures).
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et al., 1994). The structure-neutral sequences,
therefore, form connected and extended net-
works in sequence space.

Property 3 (‘‘shape space covering’’) is a
statement about the mutual entanglement of
networks belonging to different structures in the
high dimensional sequence space: all frequent
structures are realized within a small neighbor-
hood of any arbitrarily chosen sequence [for
example, 15 mutations are sufficient for a chain
of length l=100, see (Schuster, 1995)].

It is important to realize that the contemplated
features are largely independent of the predictive
accuracy of the algorithm for individual se-
quences. That is, even if the algorithm fails to
reproduce details of the actual secondary
structure of a particular sequence (as deter-
mined, say, by phylogenetic comparisons), it still
captures the logic of constrained base-pair
optimization characteristic of RNA folding.
There is indeed evidence that properties 2 and 3
hold in nature (Ekland et al., 1995; Pütz et al.,
1991). Our claims are further substantiated by
observing that the properties we call ‘‘generic’’
have been found to be insensitive to the choice
of the criteria of structure formation (minimizing
free energy or maximizing base pairing or kinetic
folding), as long as one structure is assigned to
every sequence. They are also numerically robust
to variations in the set of empirical energy
parameters or the thermodynamic level of
description (one mfe structure vs. the Boltzmann
ensemble for a given sequence)* (Tacker et al.,
1996).

These statistical properties, in particular
neutrality, have led to a mathematical model
based on percolation in random graphs (Reidys
et al., 1997). In recent work we began to link the
properties of the folding map with features
observed in evolutionary dynamics. Model RNA
populations in a flow reactor were subject to
selection for a prespecified target structure. In
particular, we found diffusion of the population
on a neutral network, and recovered the fixation
rates expected from Kimura’s theory (Kimura,

1983), thus establishing a microscopic model for
neutral evolution (Huynen et al., 1996).

3. Secondary Structure

In what follows it will be very useful to shift
back and forth between two levels of resolution
for secondary structures, fine grained and coarse
grained structures. The fine grained level
corresponds to the conventional definition of
secondary structure, as the set P of paired
positions which minimize free energy subject to
the condition that if (i, j) and (k, l) are both in
P, then iQ kQ j implies iQ lQ j. This condition
means that no pseudoknots are being considered.
For example, a line-oriented representation of a
‘‘Y’’-shaped secondary structure of length 29
would look like ‘‘((((.(((...))).(((...))).))))’’. Match-
ing parentheses indicate positions which are
paired with one another.

The coarse grained level is defined by
discarding information about the size of stacks
and loops. The only information retained about
a structural element is its type: stack [symbolized
by a pair of matching parentheses ()], hairpin
loop (H), internal loop (I), left (B) or right (b)
bulge, and multiloop with more than two
branches (M). Thus, the above ‘‘Y’’-structure
would read as ‘‘((H)(H)M)’’. Renderings which
better convey the topological nature of sec-
ondary structure at both levels of graining can be
seen in Fig. 1.

4. A Relation of Accessibility

A natural metric for sequences is given by the
Hamming distance indicating the number of
positions d(a, b) at which two sequences a and
b differ. This metric is natural for situations
conserving chain length where point mutations
are the exclusive source of variation. The
Hamming metric then mirrors the physical
processes interconverting sequences. In natural
populations point mutations are indeed more
frequent than insertions and deletions.

It is, however, far less clear what constitutes a
natural metric for structures. Common practice
defines distance measures for structures directly
on some suitable representation of structure. For
example, the root mean square deviation

*Similar properties have been recently discovered in
lattice models of protein folding (Govindarajan &
Goldstein, 1996, 1997; Helling et al., 1996).
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F. 1. Shapes in the tRNA neighborhood: (a) shows the 12 highest ranked shapes with regard to neighborhood frequency
(left to right, top to bottom). The series is the same with regard to the frequency of occurrence, except that (8 ranks first
(and all others are shifted by one rank); (b) shows the set of 12 topmost coarse grained structures ranked according to
frequency of occurrence. All but the last shape are also found (in somewhat different ranking) within the top 15 with regard
to neighborhood frequency. The last shape ranks 25th. All structures of (a) are represented by the first two coarse grained
structures of this list. (The sample comprised 5051 sequences with tRNA fine grained structure. Of the 1 151 628 one-error
mutants a fraction of 0.39 were neutral with respect to the coarse grained tRNA structure, the remaining 703 476 sequences
realized 5881 different coarse grained structures.)



  495

between two sets of three-dimensional coordi-
nates, or the edit distance between tree
representations of RNA secondary structures, or
overlaps between contact maps of protein
structures. However, from an evolutionary point
of view any definition based on a syntactic
notion of (dis)similarity is bound to be artificial,
since there are no physical processes which
directly and inheritably modify structures at this
level of representation. To modify a structure
evolutionarily, requires modifying its underlying
sequence. It is at once clear, then, that a structure
b which is highly dissimilar from a structure a on
syntactic grounds might nonetheless be ‘‘near’’
to a on the count of being accessible from a by
a small mutation in a’s sequence. Alternatively,
among two syntactically highly similar struc-
tures, one might nonetheless fail to be evolution-
arily ‘‘accessible’’ from the other. Notice that
such a relation of accessibility does not quantify
distance, but expresses a weaker notion of
neighborhood. Pursuing this line we are led to a
topology rather than a metric on the set of
phenotypes.

More specifically, we consider the set Sa of
sequences which fold into a given structure a and
define its boundary BaWS to consist of all
sequences at Hamming distance 1 from any
sequence in Sa. Similarly, we call the set of
sequences at distance d from Sa its d-boundary,
and let ‘‘boundary’’ stand as a shorthand for
1-boundary. We next fold all sequences in Ba to
obtain their set aaWa of mfe structures. We refer
to aa as the set of 1-accessible strucures of a. The
d-accessible structures are defined similarly. We
will, however, focus only on 1-accessibility, or
accessibility for short, since it turns out to be
sufficient for the interpretation of computer
experiments at low mutation rates. High
mutation rates may well require 2- or higher
d-accessibilities.

In sum, we shall say that b is accessible from
a, or b 9 a, if there exists a pair a, b$S with d(a,
b)=1 and f(a)= a and f(b)= b. In this
notation the set of structures accessible from a is
written as aa = 4b =b 9 a5. We defer a definition
of ‘‘nearness’’ to a later section.

Recall that the generic property 2 above states
that we can think of Sa as an extended network
of neighboring points in sequence space having

equal structure a. This view is quite useful at
times, but unless otherwise noted we continue
thinking in terms of the set Sa. The only
difference is that in the latter case the shape a is
included in aa(SaKBa $ 0,

but 4neutral network5 KBa =0�),

and the existence of neutral neighbors is
expressed by the reflexivity of the accessibility
relation.

5. Boundary Statistics

No resources are available to completely
identify the set of structure-neutral sequences,
Sa, not even for moderate chain lengths, let alone
to exhaustively fold its boundary. We must,
therefore, resort to sampling Sa. We start by
fixing a secondary structure a of length l, and
generate by ‘‘inverse folding’’ (Hofacker et al.,
1994) a sample of n sequences which have a as
their mfe configuration. For each sequence in the
sample we fold all its 3l neighbors, obtaining the
structures of 3ln sequences in the boundary of Sa.
These structures constitute a sample of aa.

Our interest is not just in the accessible
structures, but also in how often they occur.
Each structure b9a has two multiplicities
associated with it. One multiplicity, N(b, a),
counts the total number of sequence-neighbor-
hoods of a in which structure b occurs at least
once. We normalize it by the size Na of Sa, and
call it the neighborhood frequency: n(b,
a)=N(b, a)/Na. It reflects the likelihood of
finding structure b in the one-mutation neighbor-
hood of a randomly chosen sequence of Sa. The
other multiplicity refers to the total number of
occurrences, Nt(b, a), of structure b in Ba. Each
neighborhood of a sequence in Sa is, therefore,
weighted with the actual instances of b in that
neighborhood. We normalize it by 3lNa, and call
it the occurrence frequency: q(b, a)=Nt(b,
a)/3lNa. n(b, a) and q(b, a) are estimated by
sampling aa as mentioned above.

6. Statistical Topology

In discussing the topological structure of a set,
we may start with a notion of neighborhood for
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each member of that set. Often the set one starts
with is already a metric space, and the
neighborhoods of a point x are defined by means
of e-balls consisting of all points at a distance less
then e from x. As remarked previously, we lack
an evolutionarily relevant metric on the set of
shapes, and there need not exist one. Instead, we
define sets playing a role similar to e-balls as a
neighborhood base. Let a$a and consider the
sets

Ce(a)= 4b$aa =r(b,a)e e5,

where 0Q eE 1 and 0E r(b, a)E 1 denotes a
measure for the frequency of b in the boundary
of Sa, such as n(b, a) or q(b, a) defined above.
Clearly, e1 q e2 implies Ce1(a)WCe2(a). We note
that r(b, a) is not a metric; in general r(b, a) is
neither symmetric, nor does the triangle inequal-
ity hold. Technically speaking, a neighborhood
of a is any set Ce(·) containing a.

The actual topology of a depends on exactly
what shapes those Ce(a) contain for any a$a.
The contents of these sets are not arbitrary, but
rather a property of RNA folding (as captured
by the folding algorithm), and must be obtained
from a numerical investigation of r(b, a). A
rigorous topology is invariably spoiled by the
complexities of folding, and, hence, what matters
here are statistical patterns. Moreover, given the
combinatorial vastness of the space of possible
sequences, we can only proceed by example. This
means in particular, that our findings can be
reasonably expected to hold only for the set of
frequent shapes referred to previously.

Neighborhoods in shape space can also be
thought of as ‘‘correlation sets’’, reflecting
conditional structure correlations between pairs
of nearest neighbors in sequence space, one of
them folding into a fixed structure a. We call the
topology based on such correlation sets a
statistical topology. In the remainder of this
paper we describe the contents of the Ce(a), we

then give a simple interpretation of the emerging
topology, and make the connection with
evolutionary trajectories obtained from com-
puter simulations.

7. The Set of all Boundary Shapes

As an example we start with the statistical
profile of the shapes realized in the boundary
of a tRNA clover-leaf structure, and consider
first the contents of the biggest set in the
neighborhood basis — the set of all shapes
realized in the boundary of StRNA, atRNA =
4b$a=r(b,tRNA)q 05 (=Ce(tRNA), where e is
the smallest frequency greater than zero, a lower
bound being simply 1/4l). It is difficult to say
something precise about the contents of this set,
since our sample never catches all the shapes
which occur just once in the boundary of StRNA.
Some useful information, however, can be
obtained by looking at the considerably smaller
universe of coarse grained secondary structures
defined previously. The question we ask is
whether there is anything tRNA-specific to atRNA

at the coarse grained level.
Our sample (described in Fig. 1) yielded 5882

distinct coarse grained shapes. We denote the
coarse grained atRNA with ac

tRNA, and probe
specificity by intersecting ac

tRNA with a pool of
coarse grained random structures. The pool
consisted of 1578 unique shapes based on the
coarse grained folds of 11 000 random sequences
of length l=76. 90.4% of the shapes in the
random pool were found in ac

tRNA. The same
procedure was applied to four other structures a

of the same length l=76. The sample size of
their ac

a sets was about half the size of the tRNA
sample. Their overlaps with the random pool
were 82.4, 78.5, 73.3 and 81.7%*. It is important
to stress that random sampling of sequence
space is almost exclusively dealing with
frequent structures. Data from exhaustive
folding of GC-sequences with different chain
lengths n led to the conjecture that with
increasing n an increasing fraction of sequences
folds into a decreasing fraction of structures
(Grüner et al., 1996a, b). Already for n=30, less
than 7% of all sequences form non-common
structures.

*The corresponding structures were:
‘‘.........((((........)))).(((((.......))))).....(((((.......)))))...........’’,
‘‘...((((.((((((....))))))..)).))....(((((...)))))......((.((((......))))))...’’,
‘‘....((((................))))((((((((.(((.........))).)))..((((...)))).))))).’’,
‘‘.......(((((((....))))))).(((((.((((((.....))))))....(((......))).....))))).’’.
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A further test set of 169 coarse grained
structures was obtained from 10 000 random
sequences of length l=45. Its overlap with the
ac

a-sample of a randomly chosen structure a of
that length was 87.6%. Similarly, a pool of 32
shapes, generated by 20 000 random sequences
of length l=29, was intersected with the
ac

Y-sample (74 shapes) of the ‘‘Y’’ shape,
‘‘((((.(((...))).(((...))).))))’’. The overlap was 100%.

We draw the conclusion that the set of coarse
grained shapes realized in the boundary of a
random structure contains the overwhelming
majority of all coarse grained shapes realized by
sequences of fixed length. While feasible sample
sizes remain insufficient to collect true low
frequency shapes, it is nonetheless tempting to
conjecture that the boundary of a shape does
contain all frequent coarse grained shapes
realized by a given chain length.

Let us recall the generic property 3, shape
space covering, which states that for any two
frequent structures a and b, the distance between
two sequences folding into a and b will not be
larger than a certain value which is small
compared with the diameter of sequence space.
Our conjecture here corresponds to the obvi-
ously much stronger claim that this value is
Hamming-distance one. Let us refer to it as the
adjacency conjecture. At the fine grained level of
secondary structure the adjacency conjecture is
unlikely to hold. In fact, for the binary GC-only
sequence space of length l=25 the claim is false.
Exhaustive folding of that space reveals,
however, that there is a substantial fraction of
shapes which are common to the shape
boundaries aa of the most frequent shapes a.
This shared subset comprises between 30 and
70% of the individual aa. It is likely to be even
larger for AUGC sequences. In contrast, the
intersection of the aa of several rare structures
turns out to be empty. For coarse grained
secondary structures the picture is diffierent: in
the case of GC-only sequences of length 25 the
adjacency conjecture was found to hold.

As a consequence of the shape space covering
property, an evolutionary process has to explore
only a restricted (yet still substantial) l-dimen-
sional volume of sequence space, in order to find
an arbitrary frequent shape. However, when
advantageous mutants are not immediately

accessible to a given population of sequences,
mutation dynamics and selection pressure
confine the population to drift on a (much) lower
dimensional slice of sequence space given by the
neutral network of the temporarily fittest shape
(Huynen et al., 1996). Huynen (1996) pointed
out that while drifting, a population keeps
exploring the network’s one-error boundary. The
point added by the adjacency conjecture is that
selective confinement to a neutral network does,
in principle, not preempt the process from
eventually reaching any of the frequent coarse
grained shapes.

8. Not all Shapes are Equally Important

The contents of the other Ce(tRNA) depend
on the frequency of accessible shapes. Figure 2
shows a log–log plot of the rank ordered
distributions of the neighborhood frequency,
n(b, a) (curve 1), and the occurrence frequency,
q(b, a) (curve 3), for fine grained structures. The
main feature is the existence of two regimes with
distinct exponents. The first regime includes a
small set of about 30 shapes which are
considerably more frequent (and thin out
substantially faster with increasing rank) than
the dominant tail regime which covers several
orders of magnitude. This signals the existence of
structures which are characteristic neighbors of
the tRNA, in the sense of occurring with high
probability among the one-error mutants of only
those sequences which fold into the tRNA
structure.

The most frequent structure is the reference
structure a, and percolating neutrality is
expressed by the fact that n(a, a)=1. This being
the case for any frequent shape a (generic
property 2), we will omit the reference structure
a from its fine grained distribution data and the
rankings. Figure 1(a) shows the 12 most frequent
fine grained structures ranked according to n(b,
a). Figure 1(b) summarizes the top neighboring
structures at the coarse grained level. The coarse
grained ‘‘neutral’’ is included here, because it
represents a variety of distinct fine grained
variants. However, in the corresponding fre-
quency distributions, Fig. 2(a) curves 3 and 4, the
contribution due to fine grained, or ‘‘true’’,
neutrality has been subtracted. The two topmost



101 102 103 104 105

10–5

10–4

10–3

10–2

10–1

10–6

100

10–3

10–2

10–1

1

Rank

N
ei

g
h

b
o

rh
o

o
d

 f
re

q
u

en
cy F

req
u

en
cy o

f o
ccu

ren
ce

2

5

4

3

1

(a)

(b)

( ( ( ( ( ( . . . ( ( ( ( . . . . . . . . ) ) ) ) . ( ( ( ( ( . . . . . . . ) ) ) ) ) . . . . . ( ( ( ( ( . . . . . . . ) ) ) ) ) . ) ) ) ) ) ) . . . .

1.0

0.8

0.6

0.4

0.2

0.0

F
ra

ct
io

n
 o

f 
n

eu
tr

a
l 

m
u

ta
n

ts

Structure

.   . 498



  499

coarse grained structures in Fig. 1(b) represent
most of the high frequency fine grained
neighborhood. Other frequent coarse grained
structures include variants lacking the multiloop,
or having stems interrupted by (small) internal
loops.

With one exception, all high ranking fine
grained structures are very similar to the
reference. They arise from shortening or
lengthening a stacking region by one base pair
with the concomitant lengthening or shortening
of the affected loop region. These structures all
share the same coarse grained shape. In reference
structures with long stacks, the blocking of a
base pair often produces small ‘‘bubbles’’
(internal loops or bulges), while conserving the
overall hairpin architecture. In Fig. 2(b) the high
frequency neighbors of the tRNA shape can be
immediately identified by comparing the fraction
of neutral mutations per position of the fine
grained (black) and the coarse grained (grey)
case. Large differences between both levels flag
exactly those positions whose modification yields
fine grained variants indistinguishable from the
coarse grained reference structure.

The notable exception to the series of slight
variants is the three-hairpin structure ranked (8
in terms of neighborhood frequency (0.52). It
even ranks first in terms of frequency of
occurrence [0.03; all others shown in Fig. 1(a)
shift down in rank by one]. This shape deserves
further attention and we shall give it the name:
tRNA8.

Consider now the Ce of tRNA8 (see Fig. 3 for
shapes and Fig. 4, curve 1, for the frequency
distribution). Observations analogous to those
made for the tRNA case apply here as well. The
main point, however, concerns the relation

between the two structures: the tRNA structure
was never sampled in the boundary of tRNA8.
Every second sequence in StRNA is susceptible to
the destruction of the multiloop closing stem
upon a single point mutation in that region. In
strong contrast, extremely few sequences in StRNA8

meet the constraints for the creation of any
closing stem from an open region in one
mutation. Evidently, the relation between pheno-
types induced by a frequency weighted genotypic
accessibility is not symmetric.

This statistical asymmetry has a counterpart in
sequence space at the level of the corresponding
neutral networks. The neutral network of the
tRNA8 structure is substantially larger than the
one of the tRNA. The fact that the tRNA8

network is persistently found one step away from
the tRNA network, suggests a kind of ‘‘embed-
ding’’: seen from the smaller network, the larger
one appears almost everywhere in its boundary,
while from the viewpoint of the larger one, the
smaller appears almost nowhere.

Similar asymmetric relations hold between the
tRNA8 structure and some of its topmost
boundary shapes. For example, with high
frequency any of the remaining stacks of tRNA8

can disappear in a single point mutation (see the
shape ranked (4 in the coarse grained
neighborhood, Fig. 3). Two-stack structures of
this kind are even found among the high
frequency ranks of the tRNA boundary. This is
due to the existence of sequences whose tRNA
structure contains a hairpin stem which is
stabilized only in the context of the multiloop. If
a mutation destroys the multiloop, the multiloop
sensitive stack opens as well.

At the coarse grained level, the intersection of
ac

tRNA with ac
tRNA8

(3344 coarse grained structures

F. 2. Shapes in the tRNA boundary. 2199 sequences folding into the tRNA clover-leaf reference structure [length l=76,
inset of plot (a)] were sampled. All their one-error mutants (2199.76.3=501 372 sequences) were folded. A fraction of 0.28
(142 847 sequences) had the same structure as the reference. The remaining 358 525 sequences folded into 141 907 distinct
shapes. Curve 1 is a log–log plot of their rank ordered neighborhood frequency (thick line, left ordinate) and curve 3 shows
their rank ordered frequency of occurrence (thin line, right ordinate). The dotted vertical line is meant to separate regions
with different scaling. In a second sample (of 5051 sequences with reference structure) we collected the statistics pertaining
to coarse grained shapes. The corresponding data sets 2 and 4 are analogous to curves 1 and 3, respectively. The fraction
of fine grained neutrals was subtracted from the coarse grained neutral; (b) shows the neutral mutation frequency as a
function of the position mutated (sample of 6597 sequences per position) for the fine grained case (black impulses) and
for the coarse grained case (sample of 15 153 sequences per position; grey impulses). The abscissa shows the reference
structure with pairs of matching parentheses representing base pairs at the corresponding positions along the sequence. Note
the lower, but non-zero, level of neutrality in the paired regions due to GU pairing.
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F. 3. Shapes in the tRNA8 neighborhood. The arrangement of shapes is as in Fig. 1. The highest ranked shape not
shown ((13) in terms of neighborhood frequency lacks the 5' hairpin stem. The sample consisted of 2200 sequences folding
into the tRNA8 structure. Of the 501 600 one-error mutants a fraction of 0.36 were neutral with respect to the fine grained
structure. The remaining sequences in the boundary sample realized 130 668 distinct fine grained shapes and 3344 distinct
coarse grained shapes.

in the sample) shows an overlap of 81.1%, as
expected from the previous intersection results
with random pools. All top 30 coarse grained

structures realized in the boundary of StRNA8

occur among the top 91 realized in the boundary
of StRNA.
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9. The Choice of Frequency

Consider a structure which occurs once among
the one-error mutants of each of 10 000
sequences in the sample, and one that occurs 100
times around 100 sequences. Both are indistin-
guishable in terms of the occurrence frequency,
q(b, a), but the former ranks much higher with
respect to the neighborhood frequency, n(b, a).
Whether the two frequencies emphasize different
notions of neighborhood, depends on the actual
distribution of occurrences of b per sequence
neighborhood of a.

Figure 5 shows three typical scenarios for the
tRNA case. The neutral structure has a wide
distribution ranging from 25 to as much as 109
occurrences per one-error neighborhood. This is
in contrast to most accessible variants, an

example of which is shown in the inset of Fig. 5.
Their occurrences range typically between 1 and
less than 10 per sequence neighborhood, which
does not make a big difference between n(b, a)
and q(b, a). The exception is again tRNA8,
whose distribution is bimodal. This bimodality is
found with all accessible structures lacking the
multiloop closing stem, and indicates that there
are many sequences in which an extended shape
feature — here the multiloop closing stem — is
marginally stable. For example, the tRNA
multiloop closing stem comprises 12 nucleotides,
yielding 36 possible one-error mutants each of
them blocking the affected base pair with
probability 4/6 or 5/6, depending on whether or
not it is a GU pair. Assuming the limiting case
that the stack is so marginally stable that
removal of any one pair destroys the entire stem,

F. 4. RNA boundary distributions for non-tRNA structures. Log–log plots of rank ordered neighborhood frequency
distributions of other RNA shapes. Curve 1 (thick line) belongs to tRNA8, curve 2 belongs to a randomly chosen structure
of the same length (l=76), and curve 3 to a Y-shaped structure of length l=29.
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F. 5. Occurrence distribution in sequence neighborhoods. The plot shows for three tRNA boundary shapes how often
each of them occurs in how many sequence neighborhoods (Each neighborhood allows for a maximum of 76.3=228
occurences). The right side (dark) and the left side (light) of the plot refer to the neutral shape (tRNA) and the tRNA8,
respectively. (The two plots barely overlap). For tRNA8, the area under the low incidence region roughly equals the area
under the high incidence region (0.54 up to the minimum at 10, separating both regions), indicating that the multiloop closing
stem is realized stably and marginally with approximately the same frequency. The inset shows the distribution for the most
frequent boundary shape after the neutral one. See text for details.

one expects 24 to 30 instances per sequence
neighborhood. The maximum for tRNA8 in Fig.
5 is 31. In general, one expects the frequency with
which an extended shape feature is marginally
realized to match roughly the frequency with
which it is stably realized (giving rise to only few
occurrences per neighborhood), since strong and
weak stacking interactions between Watson–
Crick pairs are balanced. Non-Watson–Crick
GU pairing affects this balance only slightly,
because excessive GU pairing destabilizes a stack
to such an extent that it does not form to begin
with.

The majority of frequently realized modifi-
cations are limited to local shape features, such
as individual base pairs. These can necessarily be
realized only a few times per neighborhood, as
there are only few positions for a mutation
to affect the feature in the first place. The

corresponding occurrence distributions are simi-
lar to each other, and resemble the one shown in
the inset of Fig. 5.

While the shape space neighborhood struc-
tures induced by n(b, a) and q(b, a) appear quite
similar, we prefer n(b, a) as it treats large and
small shape features on an equal footing.

10. Nearness

The form of the rank-ordered boundary shape
distributions [Figs 2(a) and 4] indicates a
shape-(a)-dependent value d separating the
characteristic set of high frequency structures
from a low frequency background shared to a
large extent with any other reference shape. This
suggests to describe the topological structure of
RNA shape space by considering for each shape
a only the shapes accessible from a with a
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frequency of at least d. For moderate chain
lengths, like those considered here, d is not
sharply defined. Yet, our goal here is to
emphasize the major qualitative aspects of shape
space organization. To this end we single out
among the neighborhoods Ce(a) the particular
one Cd(a)= 4b$aa =r(b,a)e d5, and call it the
characteristic set of a. It is the largest
neighborhood of a that is specific to a [as
opposed to the largest but least specific set
C0(a)=aa—the set of boundary shapes].

At both, the coarse and fine grained levels of
resolution, the highest ranking structures occur
with almost the same frequency [see the initial
flat region of the frequency distribution in Figs
2(a) and 4]. This suggests a variant of the
proposed neighborhood system in which the e in
Ce(a) is varied in a discrete fashion, so that the
most frequent shapes occur all at once in the
smallest neighborhood.

We finally proceed to define nearness. A shape
b is defined to be near a set of shapes G, if every
neighborhood Cd(b) contains a shape of G. By
abuse of language we call a shape b near a shape
a, if b is an element of Cd(a) (in which case b is
near the characteristic set of a according to the
definition above). In this sense the tRNA8 shape
is near the tRNA, but the tRNA is not near
tRNA8. Nevertheless, for many (not all) shapes
b in the characteristic set of a the nearness
relation is symmetric. Consider, for example, a
hairpin structure a with a single stack of length
s. Almost every sequence folding into a will have
among its 1-error mutants some in which the
loop closing terminal base pair of the stack has
been destroyed, yielding a shape b with a single
stack of length s−1. Conversely, given a
sequence which folds into b, it is easy to access
a by rebuilding that base pair through a single
mutation.

11. The Substructure Relation

It is instructive to compare this topology with
a different relation. Secondary structures are
partially ordered by the subset relation on the set
of their base pairs Pa: aQ b (read: a is a
substructure of b), if PaWPb. This relation can be
visualized as a directed graph on a. In the
present context we are interested only in the

undirected version of that graph, that is, two
structures are connected by an edge if they are
comparable, i.e. if either aQ b or bQ a holds.
Obviously, two structures are comparable, if
they arise from one another by either removing
or adding base pairs (subject to the no-pseudo-
knot condition). Conversely, two structures are
incomparable, if their interconversion involves
both removing and adding base pairs. In the
latter case it is useful to distinguish whether the
interconversion is a generalized shift. We define
a change of base pairing to be a generalized shift,
if for each base pair changed at least one base
remains paired. This includes the standard shift,
where paired strands slide past each other,
typically by a few positions (Fig. 6). A
generalized shift, however, also covers trans-
formations such as the ‘‘roll-over’’, the ‘‘flip’’,
and the ‘‘double flip’’ sketched in Fig. 6.

Structures that differ by generalized shifts
are called shift-incomparable. For example,
k0 ‘‘(((.....)))..((((...))))’’ and
l0 ‘‘((((...))))..(((.....)))’’ are incomparable but
not shift-incomparable, while k and
m0 ‘‘(((......))).((((...))))’’ are shift-incomparable,
as are k and n0 ‘‘.(((.....))).((((...))))’’.

Our previous observations indicate that if a
structure a is near a structure b, then a and b are
comparable. The converse is not quite true,
however. Consider, for example, the pair
a=tRNA8 and b=tRNA. Rather, if two
structures are comparable and their symmetric
difference D(a,b)= (Pa −Pb)Q(Pb −Pa) is small,
such as one or two base pairs, then both a and
b are near one another.

Notice that, by definition, if b is near a, we can
pass from a to b directly, that is, in one step,
without leaving the characteristic set of a. For
the sake of simplicity, let us refer to the
characteristic set of a as ‘‘the’’ neighborhood of
a. If b is not near a, the one-step transition from
a to b requires leaving the neighborhood of a

[Fig. 7(a)]. A transition from a to b need not be
in one step, but may occur in several stages. If
this prevents neighborhood boundaries from
being crossed, we call the transition continuous
[Fig. 7(b)]. An example is given by the previously
mentioned structures k and l. They are
incomparable, and a direct transition from, say,
k to l leaves the neighborhood of k. However,
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the transition is reducible, since there is an
intermediate structure k'= ‘‘((((...))))..((((...))))’’
which is comparable with k and D(k, k') is small.
From the numerical neighborhood profile of k

we can infer that the transition from k to k' does
not leave the neighborhood of k. Moreover,
since k' is similarly related to l, the transition
from k' to l does not leave the neighborhood of
k' either. Hence, there is a continuous multi-step
transition from k to l. In contrast, there is no
continuous transition from tRNA8 to the tRNA.
Table 1 summarizes the observed regularities.

In general, if b is not near a and there exists
a series of structures a0 a0 a1 . . . ai−1 ai . . .
an 0 b such that ai is near ai−1, the overall
(multistep) transition from a to b is continuous.
A transition is irreducibly discontinuous, if no
such series exists. The irreducibly discontinuous
transitions are realized by two scenarios: (1) a

and b are comparable, but in passing from a to
b a long stacking region, such as a multiloop
closing stem, must be created from scratch (the
symmetric difference is large and aQ b), or (2)

a and b are shift-incomparable. Both cases have
one feature in common: the transition cannot be
done incrementally on thermodynamic grounds.
Case (1) reflects the fact that a minimum stack
size is needed to compensate for the destabilizing
free energy contribution resulting from the loop
created by the new stack. This nucleation size
depends on the nature of the stacking pairs, the
terminal mismatches, and the nature and the size
of the loop. Case (2) reflects the fact that shifting
a stretch of contiguous base pairs requires their
synchronous displacement. The pairs cannot
shift in random sequential order without
violating obvious steric constraints (and, for-
mally, the no-pseudoknot constraint). Moreover,
if a shift were to happen in stages, unpaired
bubbles arise which need stabilization by a
minimum stack size on either side. Shifts of long
stretches are indeed likely to happen in stages,
but typically not shifts involving stacks of size 4.
The irreducibly discontinuous transitions are,
hence, determined by the thermodynamics of
folding. These observations are the key to

F. 6. Generalized shifts. The figure shows the shift types bundled under the term generalized shift. In a standard shift
(upper left) one strand of a stacked region slides past the other. (Light lines indicate the new pairing pattern.) The result
is the growth of a loop. In a ‘‘roll-over’’ (upper right) both strands of a stack shift by the same amount; as a result the
loop maintains its size and, in the example, ‘‘rolls’’ towards the 5' end. A ‘‘flip’’ denotes a big slide where the new position
of the shifted strand does not overlap with the old position (lower left), while a ‘‘double flip’’ refers to the analogous situation
in which both strands flip. In all cases, for each base pair involved, at least one position remains paired before and after
the change.



Characteristic set of(a)

(b)

Characteristic set of

Characteristic set (cs) of

cs of 1

1

cs of 2

2

cs of 3

cs of

cs of

4

4

3

  505

F. 7. Continuity of transitions. The upper drawing shows a situation in which b is in the characteristic set of a, but
not vice versa. By definition this simply means that accessing b from a is easy on average, while accessing a from b is not.
The former transition is termed continuous, the latter discontinuous (dotted arrow). The lower drawing illustrates how a
discontinuous one-step transition from a to b becomes continuous by means of a suitable series of intermediates accessible
through continuous one-step transitions.

understanding the evolutionary dynamics of
simulated RNA populations to which we turn
next.

12. Boundary Conditions

The influence of the genotype-to-phenotype
map on evolutionary dynamics is potentially
blurred by the composition with a phenotype-to-
fitness function. The latter introduces a further

type of neutrality resulting from different shapes
having the same fitness. As a consequence,
phenotypically distinct neutral networks in
genotype space are merged into one larger
fitness-neutral network. While the phenotype-to-
fitness map can be largely arbitrary and directly
influenced in laboratory evolution experiments,
we believe that the two cases studied here delimit
a wide class of meaningful funtions. We have in
mind a fairly generic situation in which RNA
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sequences evolve towards a shape capable of
binding to some chosen molecule, as is indeed the
case in SELEX-type experiments producing
small RNA binders called ‘‘aptamers’’ (Elling-
ton, 1994). Since we are interested in evolution-
ary trajectories rather than searching for a shape
with some predefined property, we specify in
advance what the final shape ought to look like.
Our mapping from shapes to replication rate
constants (fitness), then becomes a simple
function of the syntactic distance of a given
shape to a prespecified target shape (see below).
Given a distance measure d, a shape replicates
faster, the more it resembles the target. In all
simulations reported here, the replication rate ri

of a sequence i of length l with shape a at
distance d(a, t) from a target shape t is given by
ri =(0.01+ d(a, t)/l)−1. Using an exponential or
a linear function did not make any difference
with regard to the issues we are interested in. We
used a rate of eight errors per 1000 nucleotides
copied (for a tRNA length of l=76 this
corresponds to a per nucleotide error rate of
p=0.001). At this rate, the difference between
parent and a modified offspring sequence is
mostly one point mutation. These conditions are
thus appropriate for a statistical topology based
on 1-accessibility.

Two quite distinct distance measures on
shapes were considered. One is given by the
Hamming distance between two shapes in their
parenthesized representation, and the other is
given by the ‘‘base pair distance’’. Both treat
corresponding sequence positions which differ in
their pairing state as errors contributing to

distance (unpaired vs. paired and upstream-
paired vs. downstream-paired). The difference,
however, derives from base pair distance treating
a base pair as a unit, while Hamming distance
treats a paired position as the unit. As a
consequence, base pair distance will count as
errors situations which do not contribute
towards Hamming distance. For example,
consider two shift-incomparable shapes,
‘‘((((....))))’’ and ‘‘.((((...))))’’. Their Hamming
distance is 2 (only positions 1 and 5 differ), while
their base pair distance is 9 (all of the paired
positions differ).

Our simulation of an RNA population subject
to selection in a constrained flow reactor
according to stochastic chemical kinetics in a
continuous time model of Spiegelman’s classic
serial transfer experiments (Spiegelman, 1971).
Its implementation is described elsewhere
(Fontana & Schuster, 1987; Huynen et al., 1996).

13. Evolution in Phenotype Space: the Relay
Series

In order to study the influence of the statistical
topology on evolutionary dynamics, we focus on
the temporal succession of shapes rather than
individual sequences. Stated in terms of se-
quences this means that we focus on the
succession of equivalence classes of sequences
represented by a neutral network corresponding
to a shape. If we were to track over time which
shape gives rise to which shape, we would end up
with a vast and highly interconnected network of
phylogenies (circular paths at the level of

T 1
Substructure relations and the nature of one-step
transitions. Transitions from a to b are classified by
‘‘yes’’ and ‘‘no’’ depending on whether or not they
remain in the neighborhood of a. Asterisks mark

irreducibly discontinuous transitions (see text)
Substructure relation a, b Transition

Case Class D continuous

1 Comparable Small (1 bp) Yes
2 Comparable Stack length, bQ a Yes
3 Comparable Large, aQ b No*
4 Shift-incomparable — No*
5 Incomparable — No
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individual sequences are a common result of
mutational backflow in the population and this
backflow must be substantially larger, if we
consider entire equivalence classes of sequences
with respect to shapes). Besides the compu-
tational complexities associated with handling
hundreds of megabytes of history data pouring
from a simulation of this kind, we would still
need to know which pathways are the relevant
ones.

Our solution to this involves two steps. First,
we consider the phylogenetic network of only
those shapes that literally made history: we only
record information about events which generate
a ‘‘relative innovation’’, that is, a shape which is
new in the population at the time t of its
appearance. This does not necessarily imply that
the shape has not been in the population in the
past; it could have gone extinct some time and it
might be ‘‘rediscovered’’ at time t. This provision
removes the large backflow among extant shapes
within a population, which does not proceed into
new phenotypic territory. For each relative
innovation a we record entry times, lai , and exit
times ha

i .
In a second step, after the evolutionary process

has found the target or has been stopped, we
trace back through the history data in the
following way. Consider the set of ‘‘live
intervals’’ La = 4[lai , ha

i ], lai Q ha
i Q lai+15, marking

the presence of shape a in the flow reactor during
the simulation. Each live interval [lai , ha

i ] of a has
a unique ancestor with shape b which spawned
that interval at time lai , meaning that a sequence
folding into b produced at time lai a mutant which
folded into a, and a was not in the population at
that time. Let v be the target shape, and [lvi , hv

i ]
one of its live intervals whose ancestor is v−1.
Among the Lv−1 there is a unique live interval
[lv−1

j , hv−1
j ] containing the time instant lvi , and we

proceed searching for the unique ancestor of
[lv−1

j , hv−1
j ]. Upon repeating this procedure we

eventually end up at one of the initial shapes. At
this point we have reconstructed a chain of
shapes a0v− nv− n+1 . . . v− i . . . v−1v0 0 b

connecting an initially present shape a with the
target (or final) shape b. This chain is
uninterrupted in time, in the sense that for every
ne ie 1, v− i is ancestor of v− i+1 and there
exists a pair [lv−1

r , hv− i
r ] [lvi+1

s , hv− i+1
s ] with

lv− i
r Q lv− i+1

s Q hv− i
r . The chain depends on the

live interval of the final shape b from where the
trace starts, but it is unique for that interval. On
rare occasions there may be more than one such
interval for the target shape, since stochastic
fluctuations may wipe out the target which must
be generated again to get established in the
population. By default we consider the last live
interval of the target shape at the time the
simulation has been stopped.

Because of the chain’s connectedness in time
and its uniqueness relative to a live interval of the
final shape, we think of it as the causal chain of
phenotypic innovations leading from a to b. We
term it the relay series, in analogy to a relay-race
in which a team races to goal in stages, each
runner covering a segment of the trail and
handing over the baton to the successor. Of
course, our relay series can only be known in
retrospect.

In computer experiments it is easy to record a
unique identifier for every mutation event. When
reconstructing the relay series, we obtain the
identifier of each event that caused the passage
from one relay shape to the next. Equipped with
this hindsight, we rerun the same history (by
using the same random seeds), but this time
selectively recording the actual succession of
sequences underlying the relay series (recording
such information a priori would flood most
computer systems, because we have no foresight
into the sequence of stochastic events and thus
the relay series is accessible only by backtracking
of trajectories).

Notice that the relay series is not defined by
appealing to concentration or fitness and,
hence, the relay shapes need neither coincide
with the succession of dominant nor fittest
shapes in the population, although they do so
most of the time (Fontana & Schuster, 1998).
Moreover, the definition does not prevent the
relay series from containing cycles. Finally, the
uniqueness of the relay series (per target live
interval) refers only to a given computer
experiment. Different simulations may proceed
through different phenotypic paths leading from
a to b. In the next section we study the
relationship between the relay series and the
shape space topology.
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F. 8. Major transitions towards a tRNA shape. The figure shows how much optimization has progressed at the macro
level by plotting the average Hamming distance to the target structure. The fitness curve is superimposed by the relay trace
showing the flow of causality from start shape to target (see text for definitions). The major transitions are marked by vertical
lines. The corresponding generalized shifts are named, and the shapes before and after the transition are shown (except
for the first standard shift to avoid congestion of the figure). The flow reactor was stochastically constrained to maintain
an average of 1000 sequences and the error rate was 0.001 per nucleotide.

14. Patterns of History

We monitor a macroscopic and a microscopic
aspect of the evolutionary process. The macro-
scopic one is given by the time evolution of the
average distance (average fitness) of the popu-
lation to the target shape. The microscopic one
is a description of the temporal succession of
phenotypes, as given by the relay series. We
discuss evolution towards a tRNA shape as an
exemplar representing a variety of simulations
carried out with different target shapes.

14.1.  

In the following simulations the shape distance
function is Hamming distance. Figure 8 juxta-

poses the micro and macro aspects mentioned.
The relay series shown in Fig. 9 consists of 42
shapes, indexed from 41 (start shape) through 0
(target shape). Figure 8 also shows the live
intervals of all relay shapes separated vertically
by index. The step trace indicates the time
segment of the relay history occupied by each
relay shape. The left boundary of each segment
coincides (by definition) with the beginning of a
live interval generated by the previous relay
shape. The right boundary marks the time
instant at which the corresponding relay shape
has generated its successor in the relay series.

The shape space topology induced by the
folding map has little influence on the early
phases of evolution. This results from the fact
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that whatever change a random shape under-
goes, it is likely to narrow the gap to most
targets. Moreover, major changes are likely to
occur when shapes contain long unpaired

random regions. Chains with long unpaired
stretches, or even the open chain, are not
frequent structures for the lengths considered
here, and our topology fails. Once the opportu-

F. 9. Relay series. The full series of relay shapes for the simulation in Fig. 8 is shown. See text for details.
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nities deriving from this initial ‘‘latent’’ struc-
tural variability have been exploited for a quick
gain in fitness, the stage is set for the shape space
topology to shape the long course of the
remaining history.

In order to show that the shape space
neighborhoods underlie the relay series, we
consider the sets of live intervals of two
consecutive relay shapes, v− i and v− i+1, during
a period in which the fitness average of the
population remains constant. In such a period
relay transitions occur typically among fitness
neutral shapes, and most relay shapes are
significantly populated during some of their live
intervals. If v− i+1 is near v− i, we should observe
a series of live intervals belonging to v− i+1,
indicating its intermittent presence starting with
the arrival of v− i. This signals the fact that
v− i+1 is repeatedly generated from v− i, and,
thus, ‘‘unavoidable’’. Conversely, if v− i is near
v− i+1, we should observe a similar pattern of
live intervals for v− i, once v− i+1 has become the
relay shape. Consider, for example, the patterns
around the relay transitions marked A in Fig. 8.
The relay segment of the incoming shape v− i

(the ancestor) is followed by a series of
(non-relay) live intervals, and the relay segment
of the outgoing shape v− i+1 (the offspring) is
preceded by a series of (non-relay) live intervals.
This pattern indicates that v− i and v− i+1 are
both near each other. A pattern in which either
one of the series of non-relay live intervals is
absent, indicates that the shape associated with
that series is near the one lacking it, but not vice
versa. Thus, the patterns at the instants marked
B in Fig. 8 signal that the transition from v− i to
v− i+1 leaves the characteristic set of v− i. Yet in
all but the last cases v− i is near v− i+1, since the
presence of v− i+1 entails the presence of v− i.

During the extended periods of constant
average fitness most relay shape passages are
continuous, in the sense of proceeding within
neighborhoods. On rare occasions a discontinu-
ous relay transition—an escape from a neighbor-
hood—occurs without having an impact on
fitness (such as instant B on the plateau around
time 450 in Fig. 8). The main observation,
however, runs in the opposite direction: each
change in fitness (vertical dotted lines in Fig. 8)
is associated with the escape from a shape space

neighborhood. Either the fitness change is caused
directly by the escape, or it is shortly preceded by
it. This observation holds for all target choices
we made. In fact, that choice can only affect
which neighborhood escapes have an impact on
fitness.

Then, the basic pattern of a phenotypic path
is the following. In the early phase of the process
some random restructuring may take place, and
the overlap between stacks present and the target
is maximized by growing or shrinking stacks one
or two base pairs at a time. According to the
shape space topology outlined before these latter
adjustments are continuous. This phase of the
process necessarily stops when no continuous
improvements are possible. At this point some
stacks are positioned more or less correctly,
while others consist of one strand overlapping
with its target analogue, yet pairing to an entirely
misplaced region. The fine tuning of stack
positions without loss of fitness must proceed
through shifts (for example, the first transition
indicated in Fig. 8). Similarly, if one strand of a
stack is correct, but pairs wrongly, a generalized
shift of the ‘‘flip’’-type (Fig. 6) must occur
(second transition indicated in Fig. 8). The latter
case is put to an extreme when the position and
the pairing orientation (upstream or down-
stream) of both strands of a stack agree with the
target, but the strands do not pair with each
other in the target. To correct such a situation
under strong selection, a double flip (Fig. 6) must
occur (see Figs 8 and 9). By means of flips and
double flips the correct overall architecture of the
shape is eventually achieved, which is then fine
tuned by further standard shifts. At high
replication accuracy, the vast majority of
generalized shifts is triggered by a single point
mutation.

Recall that the statistical topology structures
the set of shapes only in the high accessibility
regime up to the threshold value d suggested by
the neighborhood frequency distribution. Yet,
the set of all boundary shapes aa extends far
beyond it. The escape from the neighborhood
system of a, that is, from its characteristic set, is
possible, because other shapes (presumably all
frequent coarse grained shapes) are accessible
from a with low probability. This includes shapes
b which differ by a generalized shift from a.
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When selection confines a population to a
dominant master shape a, escaping a’s neighbor-
hood can only occur through random drift on
the neutral network of a. This random drift
enables a specific sequence context to be set
without loss of viability, such that a single point
mutation can trigger the structural rearrange-
ment to b. This causes long waiting times on
average. Statistics of such waiting times and a
study of how they depend (if at all) on the
proximity to the target, remains to be done.

Notice that standard shift differences to the
target are also a major cause of neutrality in this
context. Consider, for example, a target structure
(or substructure) b0 ‘‘(((....))).’’ and a shift-in-
comparable shape a0 ‘‘.(((...))).’’ at Hamming
distance 2. Elongating a’s stack by a base pair,
‘‘((((...))))’’, constitutes a transition to a shape
near a and leaves the Hamming distance to b

unchanged. This is precisely what happens
during neutral drift periods. It is easily seen that
a situation with multiple stacks can lead to cycles
in the relay series. There are two instances of this
sort in Fig. 9: relay shapes (12 and (7 are
identical, as well as shapes (5 and (3.

A few details at the sequence level are worth
mentioning. The mutation which caused the
double flip from relay shape ( 18 to relay shape
( 17 (Fig. 9) occurred at a site remote from the
sites involved in the flipping. It extended the
hairpin stack near the 3' end by one base pair,
which provided sufficient stabilization for the
double flip to occur. The necessary sequence
context for this event arose during the preceding
long phase of random drift on the fitness-neutral
network of shapes (26 through (18.

Furthermore, shape (1 in Fig. 9 seems a
strange intermediate in the shift event leading
from shape (2 to the target ((0). The shift
actually happened in two stages (first (2 to (1,
then (1 to target). If the two mutation events
had occurred in the reverse order, a different
intermediate shape would have made the shift
process more obvious. With the specific se-
quences involved, the actual order of events
forced a more dramatic constriction of the
multiloop. A computer experiment whose initial
population consisted of the population at time
1000 in Fig. 8, confirmed that shape (1 is not
a necessary relay shape for the corresponding

shift. There are alternative histories. That
simulation (not shown) produced the target once
after 73 time units. A fluctuation then wiped it
from the population, and the target shape was
produced again some 20 time units later, when it
finally took over. Two relay series, differing
slightly in their final stages, are associated with
these two live intervals. In the first relay series
the target was produced by a shift directly from
what is shape (4 in Fig. 9. In the second relay
series the target arose via (3 (0(5) by a silent
roll-over and a standard shift.

14.2.   

The dominance of generalized shifts in
structural transitions is linked to the evaluation
of shapes by means of a Hamming metric which
considers each strand of a stack separately. The
Hamming metric implies that selection pressure
can hold in place one strand of a stacking region,
while the other is free to shift or to flip. Indeed,
starting from different random initial conditions,
the route to the major structural tRNA
feature — the multiloop — always involved a
double flip. Generalized shift differences to the
target are small in the Hamming metric. Yet,
shift transitions are difficult to achieve, and the
evolutionary process guided by Hamming
distance ‘‘hangs’’ whenever such a transition is
required. Direct formation of a multiloop closing
stem (the other kind of irreducibly discontinuous
transition) can be forced to occur, when starting
with a homogeneous population consisting of the
tRNA8 shape. As expected, a long period of drift
precedes the closing of the multiloop (not
shown).

It is, thus, instructive to consider the impact of
base pair distance on evolutionary trajectories.
In terms of base pair distance shifts appear as
large differences, and selection pressure is exerted
on individual base pairs rather than individual
positions, that is, the two strands of a helix
cannot evolve independently. Figure 10 shows
two runs of the optimization process for tRNA,
both starting from identical initial conditions.
The macroscopic picture exhibits the same
phenomena as discussed in detail for the
Hamming case. The main difference, however, is
at the microlevel. Transitions are now predomi-
nantly de novo constructions of stacking regions
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F. 10. Evolutionary trajectory under base pair distance. As in Fig. 8 the evolutionary approach towards a tRNA target
shape is shown in terms of average structure distance and the relay series. The difference to Fig. 8 is that the similarity
between structures is measured as a base pair distance. This distance function is virtually ‘‘blind’’ to shifts. As a result,
the de novo creation of a stacking region—the second type of discontinuous transition in the shape space topology—becomes
prominent. Selected relay shapes documenting the arrival of relevant structure motifs are shown. Correctly positioned stacks
are labelled in the order of their appearance. Neutrality between coexisting dominant shapes is indicated by double arrows.
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rather than shifts. Whether a sequence segment
folds into a stack shifted by one position relative
to the target or whether that segment does not
fold at all makes only a slight difference from the
point of view of base pair distance. To effectively
shift a stack, the stack is undone and
subsequently generated from scratch in the
shifted position. As indicated in Fig. 10, during
some neutral drift periods both neutral shape
versions, with and without a wrongly positioned
stack, were present in high concentration.

The relationship between neighborhood tran-
sitions and the relay series is seen by means of the
live interval trace in much the same way as in the
Hamming case. There is one seeming exception
in Fig. 10(a) at the second transition. That
transition is not about the creation of a new
stack, but rather about the shortening and
lengthening by one base pair of the stacks
labelled ‘‘1’’ and ‘‘2’’, respectively. However,
according to the shape space topology described
previously, these transitions are continuous and
should not be preceded by a long period of drift.
In fact, consider the live interval trace of the
relay shape b succeeding the relay shape a

present during the drift period. The trace shows
that b was generated rapidly and repeatedly after
a entered the population—as it should be, since
b is obviously near a. The problem is that the
base pair distance to the target is large at this
point in the process, and given our specific fitness
function, a distance improvement of 2 units is
too weak to trigger a sharp selective response.
Once b accumulated in the population, and
generated its own mutants, it gave immediately
rise to a (near) shape with a lengthened stack
labelled ‘‘2’’. This increased the fitness gain to 4
units, triggering a fast selection response. Such a
spurious drift period is absent from Fig. 10(b).

The correctly positioned stacks of the relay
shapes shown in Fig. 10 are numbered in the
order of their appearance. The modularity of
RNA secondary structures permits many permu-
tations in the sequence of transition events
leading to a target shape. However, in all runs
performed, the multiloop closing stem was the
last to form.

Hamming distance caricatures better than
base pair distance the in vivo or in vitro
evaluation of RNA shapes under selection

constraints similar to those considered here.
More sophisticated distance criteria, such as tree
edit distance (Schuster et al., 1994), produce a
picture which is very similar to the Hamming
case.

The main point of the comparison is to show
that even dramatic changes in the phenotypic
evaluation function only affect which of the two
discontinuous transitions dominantes, not the
fact that they dominante. The high degree to
which the RNA folding map constrains evol-
utionary trajectories in a recognizable way seems
largely independent of the fitness map imposed
on the phenotypes.

The shape space organization appears not
nearly as obvious for binary sequences. GC-only
sequences of a given shape cannot exhibit
neutrality within paired regions. This is enough
to make the escape from shape space neighbor-
boods through neutral drift extremely difficult.
While GC-only sequences with a tRNA shape
were easily found by inverse folding, extensive
simulations failed entirely to evolve anything
close to a tRNA shape in a GC-only setting. A
similar situation might hold for AU-only
sequences. However, our inability to find
AU-only tRNA shapes by inverse folding
suggests that they do not even exist.

15. Conclusions

In order to understand evolutionary histories,
we need to organize the set of possible
phenotypes in a way that reflects their attainabil-
ity through genotypic changes. This induces a
different organization than one based on moves
performed on some direct representation of the
phenotypes. The latter emphasizes a purely
syntactic similarity of phenotypes, while the
former connects with the genotypic level in a
fashion mediated by development (here folding).

‘‘Development’’ and ‘‘genetic changes’’ are
treated here in their probably simplest non-triv-
ial realization given by RNA folding and point
mutations. Since our folding algorithm computes
the shapes (phenotypes) from sequences (geno-
types) by a mathematical procedure which does
not necessarily reflect the actual process of
folding, we deal with a static (yet statistically
accurate) genotype-to-phenotype map.
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The set of RNA minimum free energy
secondary structures is organized as a topologi-
cal space by means of a frequency weighted
relation of accessibility. One-error mutants of
sequences sharing a common minimum free
energy structure preferentially fold into certain
shapes. Accessibility, thus, captures nearest
neighbor correlations at the level of neutral
networks, which are equivalence classes of
sequences with respect to shape.

The numerical analysis of the accessibility
relation implied by a widely used folding
algorithm yielded three basic findings. First, for
any frequent shape a, there exists a set of
accessible shapes which is characteristic for a

from a frequency point of view. Second, a notion
of nearness, based on this characteristic set, leads
to the notion of a ‘‘continuous transformation’’
of structure. Informally, the transformation of a
structure a into b is continuous, if it proceeds
through a sequence of neighboring genotypes
such that the structure of each offspring is near
to the structure of its parent. The discontinuous
transitions are precisely those structural changes
that cannot be sequentialized in an incremental
fashion, but rather require the synchronized
change of several base pairs. Such transitions
involve a generalized shift or the formation of a
longer stacking region, such as a multiloop
closing stem. Third, independently of fitness
criteria, the RNA shape space topology strongly
influences evolutionary trajectories approaching
a target in all but the very early stages of the
process.

Effecting a discontinuous transition in shape
space by a small genetic change (here one point
mutation) poses stringent conditions on candi-
date sequences. Optimization generally requires
discontinuous transitions in shape space. This
entails long average waiting times during which
selection pressure confines the population to
drift along neutral networks. Transitions co-
incide with an escape from a shape space
neighborhood made possible by the fact that the
boundary of a neutral network contains beyond
its characteristic set a very large number of very
low frequency shapes. Our study suggests that
this set of shapes virtually includes all frequent
course grained structures. It is, however,
precisely the neutral drift resulting from the hung

process which enables the transition to actually
occur. Neutral drift eventually leads to a suitable
sequence context which gives rise to the major
structural rearrangement upon a single point
mutation.

The temporal sequence of major structural
transitions are not made predictable by the shape
space topology considered here. The indetermi-
nacy derives from the additive modularity of
RNA secondary structure. A complex base
pairing pattern, such as the tRNA clover leaf,
can be assembled by constructing the com-
ponents (hairpins) in virtually any order. What
becomes predictable, however, is the nature of
the major structural transitions, and the fact that
they must be preceded by a period of neutral
drift leading to generalized shifts or de novo stack
formation. Once the early phase of evolution has
elapsed, a fairly educated guess about the
number of such transitions needed to reach a
target is possible.

Point mutations alone are probably impracti-
cal in the evolutionary design of large structures
in the laboratory. The use of chain elongations
and concatenations is likely to be more effective.
In view of what we have shown here, it will be
important to understand how the shape space
topology responds to these changes in sequence
space.
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