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Asset Pricing Under Endogenous Expectationsin an Artificial Stock Market

Abstract

We propose a theory of asset pricing based on heterogeneous agents who continually adapt their
expectations to the market that these expectations aggregatively create. And we explore the implications of
this theory computationally using our Santa Fe artificial stock market.

Asset markets, we argue, have a recursive nature in that agents' expectations are formed on the basis
of their anticipations of other agents' expectations, which precludes expectations being formed by
deductive means. Instead traders continually hypothesize—continually explore—expectational models, buy
or sell on the basis of those that perform best, and confirm or discard these according to their performance.
Thus individual beliefs or expectations become endogenous to the market, and constantly compete within

an ecology of others’ beliefs or expectations. The ecology of beliefs co-evolves over time.

Computer experiments with this endogenous-expectations market explain one of the more striking
puzzles in finance: that market traders often believe in such concepts as technical trading, “market
psychology, " and bandwagon effects, while academic theorists believe in market efficiency and a lack of
speculative opportunities. Both views, we show, are correct, but within different regimes. Within aregime
where investors explore alternative expectational models at a low rate, the market settles into the rational -
expectations equilibrium of the efficient-market literature. Within a regime where the rate of exploration of
alternative expectations is higher, the market self-organizes into a complex pattern. It acquires a rich
psychology, technical trading emerges, temporary bubbles and crashes occur, and asset prices and trading
volume show statistical features—in particular, GARCH behavior—characteristic of actual market data.
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Asset Pricing Under Endogenous Expectationsin an Artificial Stock Market

by

W. Brian Arthur, John H. Holland, Blake LeBaron, Richard Palmer, and Paul Tayler

I ntroduction

Academic theorists and market traders tend to view financial markets in strikingly different ways.
Standard (efficient-market) financial theory assumes identical investors who share rational expectations of
an asset’s future price, and who instantaneously and rationally discount all market information into this
price.l It follows that no opportunities are left open for consistent speculative profit, that technical trading
(using patterns in past prices to forecast future ones) cannot be profitable except by luck, that temporary
price overreactions—bubbles and crashes—reflect rational changesin assets' valuations rather than sudden
shifts in investor sentiment. It follows too that trading volume is low or zero, and that indices of trading
volume and price volatility are not serially correlated in any way. The market, in this standard theoretical
view, is rational, mechanistic, and efficient. Traders, by contrast, often see markets as offering speculative
opportunities. Many believe that technical trading is profitable?, that something definable as a “ market
psychology” exists, and that herd effects unrelated to market news can cause bubbles and crashes. Some
traders and financial writers even see the market itself as possessing its own moods and personality,
sometimes describing the market as “nervous’ or “sluggish” or “jittery.” The market in this view is
psychological, organic, and imperfectly efficient. From the academic viewpoint traders with such beliefs—
embarrassingly the very agents assumed rational by the theory—are irrational and superstitious. From the

traders’ viewpoint, the standard academic theory is unrealistic and not borne out by their own perceptions.?

While few academics would be willing to assert that the market has a personality or experiences
moods, the standard economic view has in recent years begun to change. The crash of 1987 damaged
economists beliefs that sudden prices changes reflect rational adjustments to news in the market: several

studies failed to find significant correlation between the crash and market information issued at the time

1 For the classic statement see Lucas (1978), or Diba and Grossman (1988).

2 For evidence see Frankel and Froot (1990).

3 To quote one of the most successful traders, George Soros (1994): “this [efficient market theory]
interpretation of the way financial markets operate is severely distorted. ... It may seem strange that a
patently false theory should gain such widespread acceptance.”



(e.g. Cutler et al. 1989). Trading volume and price volatility in real markets are large—not zero or small,
respectively, as the standard theory would predict (Shiller, 1981, 1989; Leroy and Porter, 1981)—and both
show significant autocorrelation (Bollerslev et al., 1990; Goodhart and O'Hara, 1995). Stock returns also
contain small, but significant serial correlations (Fama and French, 1988; Lo and Mackinlay, 1988;
Summers, 1986; Poterba and Summers, 1988). Certain technical-trading rules produce statistically
significant, if modest, long-run profits (Brock, Lakonishok, and LeBaron, 1991). And it has long been
known that when investors apply full rationality to the market, they lack incentives both to trade and to
gather information (Milgrom and Stokey, 1982; Grossman 1976; Grossman and Stiglitz, 1980). By now,
enough statistical evidence has accumulated to question efficient-market theories and to show that the
traders’ viewpoint cannot be entirely dismissed. As a result, the modern finance literature has been

searching for alternative theories that can explain these market redlities.

One promising modern alternative, the noise-trader approach, observes that when there are “noise
traders’ in the market—investors who possess expectations different from those of the rational-expectations
traders—technical-trading strategies such as trend chasing may become rational. For example, if noise
traders believe that an upswing in astock’s price will persist, rational traders can exploit this by buying into
the uptrend thereby exacerbating the trend. In this way positive-feedback trading strategies—and other
technical-trading strategies—can be seen as rational, as long as there are non-rational traders in the market
to prime these strategies (De Long et al. 1990a, 1990b, 1991; Shleifer and Summers, 1990). This
“behavioral” noise-trader literature moves some way toward justifying the traders' view. But it is built on
two less-than-realistic assumptions:. the existence of unintelligent noise traders who do not learn over time
their forecasts are erroneous; and of rational players who possess, by some unspecified means, full
knowledge of both the noise traders’ expectations and their own class's. Neither assumption is likely to
hold up in real markets. Suppose for a moment an actual market with minimally intelligent noise traders.
Over time, in al likelihood, some would discover their errors and begin to formulate more intelligent (or at
least different) expectations. This would change the market, which means that the perfectly intelligent
players would need to readjust their expectations. But there is no reason these latter would know the new
expectations of the noise-trader deviants; they would have to derive their expectations by some means such
as guessing or observation of the market. As the rational players changed, the market would change again.
And so the noise traders might again further deviate, forcing further readjustments for the rational traders.
Actua noise-trader markets, assumed stationary in theory, would start to unravel; and the perfectly rational

traders would be left at each turn guessing the changed expectations by observing the market.

Thus noise-trader theories, while they explain much, are not robust. But in questioning such theories
we are led to an interesting sequence of thought. Suppose we were to assume “rational,” but non-identical,
agents who do not find themselves in a market with rational expectations, or with publicly-known

expectations. Suppose we allowed each agent continually to observe the market with an eye to discovering



profitable expectations. Suppose further we allowed each agent to adopt these when discovered and to
discard the less profitable as time progressed. In this situation, agents’ expectations would become
endogenous—individually adapted to the current state of the market—and they would co-create the market
they were designed to exploit. How would such a market work? How would it act to price assets? Would it

converge to a rational -expectations equilibrium—or would it uphold the traders’ viewpoint?

In this paper we propose a theory of asset pricing that assumes fully heterogeneous agents whose
expectations continually adapt to the market these expectations aggregatively create. We argue that under
heterogeneity, expectations have a recursive character: agents have to form their expectations from their
anticipations of other agents' expectations, and this self-reference precludes expectations being formed by
deductive means. So, in the absence of being able to deduce expectations, agents—no matter how
rational—are forced to hypothesize them. Agents therefore continually form individual, hypothetical,
expectational models or “theories of the market,” test these, and trade on the ones that predict best. From
time to time they drop hypotheses that perform badly, and introduce new ones to test. Prices are driven
endogenously by these induced expectations. Individuals' expectations therefore evolve and “compete” in a
market formed by others' expectations. In other words, agents' expectations co-evolve in aworld they co-

create.

The natural question is whether these heterogeneous expectations co-evolve into homogeneous
rational-expectations beliefs, upholding the efficient-market theory, or whether richer individual and
collective behavior emerges, upholding the traders' viewpoint and explaining the empirical market
phenomena mentioned above. We answer this not analytically—our model with its fully heterogeneous
expectations it is too complicated to admit of analytical solutions—but computationally. To investigate
price dynamics, investment strategies, and market statistics in our endogenous-expectations market, we
perform carefully-controlled experiments within a computer-based market we have constructed, the SFI
Artificial Stock Market.*

The picture of the market that results from our experiments, surprisingly, confirms both the efficient-
market academic view and the traders’ view. But each is valid under different circumstances—in different
regimes. In both circumstances, we initiate our traders with heterogeneous beliefs clustered randomly in an
interval near homogeneous rational expectations. We find that if our agents adapt their forecasts very
slowly to new observations of the market’s behavior, the market converges to a rational-expectations
regimes. Here “mutant” expectations cannot get a profitable footing; and technical trading, bubbles,
crashes, and autocorrelative behavior do not emerge. Trading volume remains low. The efficient-market

theory prevails.

4 For an earlier report on the SFI artificial stock market, see Palmer et al. (1994).



If, on the other hand, we allow the traders to adapt to new market observations at amore realistic rate,
heterogeneous beliefs persist, and the market self-organizes into a complex regime. A rich “market
psychology”—a rich set of expectations—becomes observable. Technical trading emerges as a profitable
activity, and temporary bubbles and crashes occur from time to time. Trading volume is high, with times of
quiescence alternating with times of intense market activity. The price time series shows persistence in
volatility, the characteristic GARCH signature of price series from actual financial markets. And it shows
persistence in trading volume. And over the period of our experiments, at least, individual behavior evolves

continually and does not settle down. In this regime, the traders' view is upheld.

In what follows, we discuss first the rationale for our endogenous-expectations approach to market
behavior; and introduce the idea of collections of conditional expectational hypotheses or “predictors’ to
implement this. We next set up the computational model that will form the basic framework. We arethen in
a position to carry out and describe the computer experiments with the model. Two final sections discuss
the results of the experiments, compare our findings with other modern approaches in the literature, and

summarize our conclusions.

2. Why Inductive Reasoning?

Before proceeding, we show that once we introduce heterogeneity of agents, deductive reasoning on
the part of agents fails. We argue that in the absence of deductive reasoning, agents must resort to inductive

reasoning, which is both natural and realistic in financial markets.

A. Forming Expectations by Deductive Reasoning: an Indeterminacy

We make our point about the indeterminacy of deductive logic on the part of agents using a simple
arbitrage pricing model, avoiding technical details that will be spelled out later. (This pricing model is a
special case of our model in Section 3, assuming risk coefficient A arbitrarily close to 0, and gaussian
expectational distributions.) Consider a market with a single security that provides a stochastic payoff or

dividend sequence {dt }, with arisk-free outside asset that pays a constant r units per period. Each agent i
may form individual expectations of next period’s dividend and price, Ei[dt+1||t] and Ei[pt+l|lt], with

conditional variance of these combined expectations, aizyt, given current market information It. Assuming

perfect arbitrage, the market for the asset clears at the equilibrium price:

P :ﬁZWj,t(Ej[dt+1||t]+Ej[pt+1||t]) 2)
]



In other words, the security’s price p,is bid to a value that reflects the current (weighted) average of
individuals' market expectations, discounted by the factor B=1/(1+r), with weights
W, = (]/ajzyt)/z 1/ oy, the relative “ confidence” placed in agent j' s forecast.

k

Now, assuming intelligent investors, the key question is how the individual dividend and price
expectations E [dt+1| It] and E; [ pt+1|lt] might be formed. The standard argument that such expectations can
be formed rationally (i.e.., using deductive logic) goes as follows. Assume homogeneous investors who (i)
use the available information It identically in forming their dividend expectations, and (ii) know that others
use the same expectations. Assume further that the agents (iii) are perfectly rational (can make arbitrarily
difficult logical inferences), (iv) know that price each time will be formed by arbitrage asin (1), and (v) that
(iii) and (iv) are common knowledge. Then expectations of future dividends E; [dt+k|lt] are by definition
known, shared, and identical. And homogeneity allows us to drop the agent subscript and set the weights to
1/N. It is then a standard exercise (see Diba and Grossman, 1988) to show that by setting up the arbitrage

equation (1) for future times t+k, taking expectations across it, and substituting backward repeatedly for
E[ pt+k|lt] , agents can iteratively solve for the current price as®

b= B Edeul]. @
k=1

If the dividend expectations are unbiased, dividend forecasts will be upheld on average by the market
and so the price sequence will be in rational-expectations equilibrium. Thus the price fluctuates as the
information {1} fluctuates over time, and it reflects “correct” or “fundamental” value, so that speculative
profits are not consistently available. Of course, rational-expectations models in the literature are typically
more elaborate than this. But the point so far is that if we are willing to adopt the above assumptions—
which depend heavily on homogeneity—asset pricing becomes deductively determinate, in the sense that

agents can, in principle at least, logically derive the current price.

Assume now more realistically that traders are intelligent but heterogeneous—each may differ from
the others. Now, the available shared information I+ consists of past prices, past dividends, trading volumes,
economic indicators, rumors, news, and the like. These are merely qualitative information plus data
sequences, and there may be many different, perfectly defensible statistical ways, based on different
assumptions and different error criteria to use them to predict future dividends (Arthur, 1992; Kurz, 1993).
Thus there is no objectively laid-down expectational model that differing agents can coordinate upon, and

so there is no objective means for one agent to know other agents' expectations of future dividends. Thisis

5 The second, constant-exponential-growth solution is normally ruled out by an appropriate transversality
condition.



sufficient to bring indeterminacy to the asset price in (1). But worse, the heterogeneous price expectations
E; [ pt+1|lt] are also indeterminate. For suppose agent i attempts rationally to deduce this expectation, he

may take expectations across the market clearing equation (1) for time t+1;
O O
Ei[pt+1|lt] = PE; ?{Wj,Hl(Ej [dt+2||t] + Ej[pt+2||t])}|lt§ 3)
]

This requires that agent i, in forming his expectation of price, take into account his expectations of
others' expectations of dividends and price (and relative market weights) two periods hence. To eliminate
in like manner the price expectation Ej[pt+2|lt] requires a further iteration. But this leads agents into
taking into account their expectations of others' expectations of others' expectations of future dividends
and prices at period t+3—literally, asin Keynes's (1936) phrase, taking into account “what average opinion

expects the average opinion to be.”

Now, under homogeneity these expectations of others' expectations collapsed into single, shared,
objectively determined expectations. Under heterogeneity, however, not only is there no objective means
by which others’ dividend expectations can be known, but attempts to eliminate the other unknowns, the
price expectations, merely lead to the repeated iteration of subjective expectations of subjective
expectations (or equivalently, subjective priors on others' subjective priors)—an infinite regress in
subjectivity. Further, this regress may lead to instability: If investor i believes that others believe future
prices will increase, he may revise his expectations to expect upward-moving prices. If he believes that
others believe areversion to lower valuesislikely, he may revise his expectations to expect areversion. We
can therefore easily imagine swings and swift transitions in investors' beliefs, based on little more than

ephemera—hints and perceived hints of others' beliefs about others' beliefs.

Under heterogeneity then, deductive logic leads to expectations that are not determinable. Notice the
argument here depends in no way on agents having limits to their reasoning powers. It merely says that
given differences in agent expectations, there is no logical means by which to arrive at expectations. And
so, perfect rationality in the market can not be well-defined. Infinitely intelligent agents cannot form

expectations in a determinate way.

B. Forming Expectations by Inductive Reasoning

If heterogeneous agents cannot deduce their expectations, how then do they form expectations? They
may observe market data, they may contemplate the nature of the market and of their fellow investors. They

may derive expectational models by sophisticated, subjective reasoning. But in the end all such models will



be—can only be—hypotheses. There is no objective way to verify them, except by observing their
performance in practice. Thus agents, in facing the problem of choosing appropriate predictive models, face
the same problem that statisticians face when choosing appropriate predictive models given a specific data
set, but no objective means by which to choose a functional form. (Of course, the situation here is made
more difficult by the fact that the expectational models investors choose affect the price sequence, so that

our statisticians' very choices of model affect their data and so their choices of model.)

In what follows then, we assume that each agent acts as a market “statistician.”® Each continually
creates multiple “market hypotheses’—subjective, expectational models—of what moves the market price
and dividend. And each simultaneously tests several such models. Some of these will perform well in
predicting market movements. These will gain the agent’s confidence and be retained and acted upon in
buying and selling decisions. Others will perform badly. They will be dropped. Still others will be
generated from time to time and tested for accuracy in the market. Asit becomes clear which expectational
models predict well, and as poorly predicting ones are replaced by better ones, the agent learns and adapts.
This type of behavior—coming up with appropriate hypothetical models to act upon, strengthening
confidence in those that are validated, and discarding those that are not—is called inductive reasoning.” It
makes excellent sense where problems are ill-defined. It is, in micro-scale, the scientific method. Agents

that act use inductive reasoning we will call inductively rational .8

Each inductively-rational agent generates multiple expectational models that “ compete” for use within
his or her mind, and survive or are changed on the basis of their predictive ability. The agents’ hypotheses
and expectations adapt to the current pattern of prices and dividends; and the pattern of prices changes to
reflect the current hypotheses and expectations of the agents. We see immediately that the market possesses
apsychology. We define this as the collection of market hypotheses or (expectational models or mental

beliefs) that are being acted upon at a given time.

If there were some attractor inherent in the price-and-expectation-formation process, this market
psychology might converge to a stable unchanging set of heterogeneous (or homogeneous) beliefs. Such a
set would be statistically validated, and would therefore constitute a rational -expectations equilibrium. We

investigate whether the market converges to such an equilibrium below.

6 The phrase is Tom Sargent’s (1993). Sargent argues similarly, within a macroeconomic context, that to
form expectations agents need to act as market statisticians.

7 For earlier versions of induction applied to asset pricing and to decision problems, see Arthur (1992) and
(1994: the El Farol problem), and Sargent, op. cit. For accounts of inductive reasoning in the psychological
and adaptation literature, see Holland et al. (1986), Rumelhart (1980), and Schank and Abelson (1977).

8 |n the sense that they use available market data to learn—and switch among—appropriate expectational
models. Perfect inductive rationality, or course, is indeterminate. Learning agents can be arbitrarily
intelligent, but without knowing other’s learning methods cannot tell a-priori that their learning methods
are maximally efficient. They can only discover the efficacy of their methods by testing them against data.



3. A Market with Induced Expectations
A. The Model

We now set up a simple model of an asset market along the lines of Bray (1982) or Grossman and
Stiglitz (1980). The model will be neoclassical in structure, but will depart from standard models by

assuming heterogeneous agents who form their expectations inductively by the process outlined above.

Consider a market in which N heterogeneous agents decide on their desired asset composition
between a risky stock paying a stochastic dividend, and a risk-free bond. These agents formulate their
expectations separately, but are identical in other respects. They possess a constant absolute risk aversion
(CARA) utility function, U(c)=—exp(-Ac). They communicate neither their expectations nor their
buying or selling intentions to each other. Time is discrete and isindexed by t; the horizon isindefinite. The
risk-free bond is in infinite supply and pays a constant interest rate r. The stock isissued in N units, and

pays a dividend, dt, which follows a given exogenous stochastic process { d;} not known to the agents.

The dividend process, thus far, is arbitrary. In the experiments we carry out below, we specidize it to

an AR(1) process

dt:a+p(dt_l—a)+.5t , 4

where &, isgaussian, i. i. d., and has zero mean, and variance o3.

Each agent attempts at each period to optimize his allocation between the risk-free asset and the stock.

Assume for the moment that agent i’s predictions at time t of the next period’s price and dividend are
normally distributed with (conditional) mean and variance, E [p; + 0], and o 4. (We say

presently how such expectations are arrived at.) It is well known that under CARA utility and gaussian
distributions for forecasts, agent i's demand, X; ., for holding shares of the risky asset is given by:

X = Ei,t(p[+1+dt+1)_ p+r) (5)

2
AGt ped

where p; isthe price of therisky asset at t, and A is the degree of relative risk aversion.

Total demand must equal the number of shares issued:



N
> % =N, ©)
=1

which closes the model and determines the clearing price p —the current market price—in (5) above.

It is useful to be clear on timing in the market. At the start of time period t, the current dividend d; is
posted, and observed by all agents. Agents then use this information and general information on the state of
the market (which includes the historical dividend sequence{...d..,, d:.1,d} and price sequence{...p.o, Pt
1} toform their expectations of the next period's price and dividend E , ( Prig dt+1). They then calculate
their desired holdings and pass their demand parameters to the specialist who declares a price p; that clears
the market. At the start of the next period the new dividend d,,; is revealed, and the accuracies of the

predictors active at time t are updated. The sequence repeats.

B. Modeling the Formation of Expectations

At this point we have a simple, neoclassical, two-asset market. We now break from tradition by
allowing our agents to form their expectations individually and inductively. One obvious way to do this
would be to posit a set of individual-agent expectational models which share the same functional form, and
whose parameters are updated differently by each agent (by least squares say) over time, starting from
different priors. We reject thisin favor of a different approach that better reflects the process of induction
outlined in Section 2 above. We assume each agent at any time possesses a multiplicity of linear forecasting
model s—hypotheses about the direction of the market, or “theories of the market”—and uses those that are
both best suited to the current state of the market and have recently proved most reliable. Agents then learn,
not by updating parameters, but by discovering which of their hypotheses “prove out” best, and by
developing new ones from time to time, via the genetic algorithm. This structure will offer several desirable
properties: It will avoid biases introduced by a fixed, shared functional form. It will allow the individuality
of expectations to emerge over time (rather than be built in only to a-priori beliefs). And it will better
mirror actual cognitive reasoning, in which different agents might well “cognize” different patterns and

arrive at different forecasts from the same market data

In the expectational part of the model, at each period, the time series of current and past prices and
dividends are summarized by an array or information set of J market descriptors. And agents' subjective
expectational models are represented by sets of predictors. Each predictor is a conditionfforecast rule
(similar to aHolland classifier which is a condition/action rule) that contains both a market condition that
may at times be fulfilled by the current state of the market and a forecasting formula for next period’s price
and dividend. Each agent possesses M such individual predictors—holds M hypotheses of the market in

mind simultaneously—and uses the most accurate of those that are active (matched by the current state of
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the market). In this way, each agent therefore has the ability to “recognize’ different sets of states of the

market, and bring to bear appropriate forecasts, given these market patterns.

It may clarify matters to show briefly how we implement this expectational system on the
computer. (Further details are in Appendix A.) Suppose we summarize the state of the market by J =13 bits.
The fifth bit might correspond to “the price has risen the last 3 periods,” and the tenth bit to “the price is
larger than 16 times dividend divided by r,” with 1 signaling the occurrence of the described state, and O its
absence or non-occurrence. Now, the condition part of all predictors corresponds to these market
descriptors, and thus also consists of a 13-bit array, each position of which is filled with a0, or 1, or #
(“don’t care”). A condition array matches or “recognizes’ the current market state if all itsO'sand 1's
match the corresponding bits for the market state with the # s matching either a 1 or a 0. Thus the condition
(L) “recognizes” market states in which the price has risen in the last 3 periods. The
condition (#HHHHHHHOHHE) recognizes states where the current price is not larger than 16 times dividend
divided by r. The forecasting part of each predictor is an array of parameters that triggers a corresponding
forecasting expression. In our experiments, all forecasts use a linear combination of price and dividend,
E(pH1 + dm) = a( P+ dt) +b. Each predictor then stores specific values of a and b. Therefore the full
predictor (#H#LH#HH0##) 1 (0.96, 0) can be interpreted as “if the price hasrisen in the last 3 periods and if
the priceis not larger than 16 times dividend divided by r then forecast next period’s price plus dividend as
96% of this period’s.” This predictor would recognize—would be activated by—the market state
(0110100100011) but would not respond to the state (0110111011001).

Predictors that can recognize many states of the market have few 1's and 0's. Those more
particularized have more 1's and 0's. In practice we include for each agent a default predictor consisting of
all #s. The genetic algorithm creates new predictors by “mutating” the values in the predictor array, or by

“recombination”—combining part of one predictor array with the complementary part of another.

The expectational system then works at each time with each agent observing the current state of the
market, and noticing which of his predictors match this state. He forecasts next period’s price and dividend
by combining statistically the linear forecast of the H most accurate of these active predictors, and given
this expectation and its variance, uses (5) to calculate desired stock holdings and generate an appropriate
bid or offer. Once the market clears, the next period’s price and dividend are revealed and the accuracies of

the active predictors are updated.

As noted above, learning in this expectational system takes place in two ways. It happens rapidly as
agents learn which of their predictors are accurate and worth acting upon, and which should be ignored.
And it happens on a slower time scale as the genetic algorithm from time to time discards non-performing
predictors and creates new ones. Of course these new, untested predictors do not create disruptions—they
will be acted upon only if they prove accurate. This avoids brittleness and provides what machine-learning

theorists call “gracefulness’ in the learning process.
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We can now discern several advantages of this multi-bit, multi-predictor architecture. One s that this
expectational architecture allows the market to have potentially different dynamics—a different character—
under different states or circumstances. Because predictors are pattern-recognizing expectational models,
and so can “recognize” these different states, agents can “remember” what happened before in given states
and activate appropriate forecasts. This enables agents to make swift gestalt-like transitions in forecasting
behavior should the market change.

Second, the design avoids bias from the choice of a particular functional form for expectations.
Although the forecasting part of our predictorsis linear, the multiplicity of predictors conditioned upon the
many combinations of market conditions yield collectively at any time and for any agent a nonlinear
forecasting expression in the form of a piece-wise linear, non-continuous forecasting function whose
domain is the market state space, and whose accuracy is tuned to different regions of this space.

(Forecasting is of course limited by the choice of the binary descriptors that represent market conditions.)

Third, learning is concentrated where it is needed. For example, J=12 descriptors produces predictors
that can distinguish over four thousand different states of the market. Yet, only a handful of these states
might occur often. Predictor conditions that recognize states that do not occur often will be used less often,
their accuracy will be updated less often and, other things equal, their precision will be lower. They are
therefore less likely to survive in the competition among predictors. Predictors will therefore cluster in the

more visited parts of the market state space, which is exactly what we want.

Finally, the descriptor bits can be organized into classes or information sets which summarize
fundamentals, such as price-dividend ratios or technical-trading indicators, such as price trend movements.
The design allows us to track exactly which information—which descriptor bits—the agents are using and
ignoring, something of crucial importance if we want to test for the “emergence’ of technical trading. This
organization of the information also allows the possibility setting up different agent “types’ who have

access to different information sets. (In this paper, all agents see al market information equally.)

A neural net could also supply several of these desirable qualities. However, it would be less
transparent that our predictor system, which we can easily monitor to observe which information agents are

individually and collectively using at each time.

5. Computer Experiments: The Emergence of Two Market Regimes
A. Experimental Design

We now explore computationally the behavior of our endogenous-expectations market in a series of
experiments. We retain the same model parameters throughout these experiments, so that we can make

comparisons of the market outcomes using the model under identical conditions with only controlled
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changes. Each experiment is run for 250,000 periods to allow asymptotic behavior to emerge if it is present;

and it is run 25 times under different random seeds to collect cross-sectional statistics.

We specialize the model described in the previous section by choosing parameter values, and, where
necessary, functional forms. We use N = 25 agents, who each have M = 100 predictors, which are
conditioned on J = 12 market descriptors. The dividend follows the AR(1) process in (4), with

autoregressive parameter p set to 0.95, yielding a process close to arandom walk, yet persistent.
The 12 binary descriptors that summarize the state of the market are the following:
1-6 Current price X interest rate/dividend > 0.25, 0.5, 0.75, 0.875, 1.0, 1.125

7-10 Current price > 5-period moving average of past prices (MA), 10-period MA, 100-period MA, 500-
period MA

11 Alwayson (1)
12 Always off (0)

The first six binary descriptors—the first six bits—reflect the current price in relation to current dividend,
and thus indicate whether the stock is above or below fundamental value at the current price. We will call
these “fundamental” bits. Bits 7-10 are “technical trading” bits which indicate whether a trend in the price
isunder way. They will be ignored if useless, and acted upon if technical-analysis trend following emerges.
The final two bits, constrained to be 0 or 1 at all times, serve as experimental controls. They convey no
useful market information, but can tell us the degree to which agents act upon useless information at any
time. We say a bit is “set” if it is 0 or 1, and predictors are selected randomly for recombination, other
things equal, with dightly lower probabilities the higher their specificity—that is, the more they contain bits
set (see Appendix A). This introduces a weak drift toward the all-# configuration, and ensures that the
information represented by a particular bit is used only if agents find it genuinely useful in prediction. This
market information design allows us to speak of “emergence.” For example, it can be said that technical
trading has emerged if bits 7 to 10 become set significantly more often, statistically, than the control bits.

We assume that forecasts are formed by each predictor j storing values for the parameters &, by, in the
linear combination of price and dividend, E; [ Prsr + dt+1||t] = a (pt + dt) +b; . Each predictor also storesa

current estimate of its forecast variance. (See Appendix A.)

Before we conduct experiments, we run two diagnostic tests on our computer-based version of the
model. In the first, we test to see whether the model can replicate the rational expectations equilibrium of
standard theory. We do this by calculating analytically the homogeneous rational expectations equilibrium
(h.r.e.e) values for the forecasting parameters a and b, (see Appendix A), then running the computation
with all predictors “clamped” to these calculated h.r.e.e. parameters. We find indeed that such predictions

are upheld—that the model indeed reproduces the homogeneous rational expectations equilibrium—which
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assures us that the computerized model, with its expectations, demand functions, aggregation, market
clearing, and timing sequence, is working correctly. In the second test, we show the agents a given dividend
sequence and a calculated h.r.e.e. price series that corresponds to it, and test whether they individually learn
the correct forecasting parameters. They do, though with some variation due to the agents' continual

exploration of expectational space, which assures us that our agents are learning properly.

B. The Experiments

We now run two sets of fundamental experiments with the computerized model, corresponding
respectively to slow and medium rates of exploration by agents of alternative expectations. The two sets
give rise to two different regimes— two different sets of characteristic behaviors of the market. In the slow-
learning-rate experiments, the genetic algorithm is invoked every 1,000 periods on average, predictors are
crossed over with probablity 0.3, and the predictors’ accuracy-updating parameter 0 is set to 1/150. In the
medium-exploration-rate experiments, the genetic algorithm is invoked every 250 periods on average,
crossover occurs with probability 0.1, and the predictors’ accuracy-updating parameter 6 is set to 1/75.9
Otherwise, we keep the model parameters the same in both sets of experiments, and in both we start the
agents with expectational parameters selected randomly from a uniform distribution of values centered
upon the calculated homogeneous rational expectations ones.(see Appendix A). In the slow-exploration-rate
experiments, no non-r.e.e. expectations can get a footing: the market enters an evolutionarily-stable,
rational -expectations regime. In the medium-expl oration-rate experiments, we find that the market enters a
complex regime in which psychological behavior emerges, there are significant deviations from ther.e.e.

benchmark, and statistical “signatures’ of real financial markets are observed.

We now describe these two sets of experiments and the two regimes or phases of the market they

induce.

The Rational Expectations Regime. As stated, in this set of experiments, agents continually explore in
prediction space, but under low rates. The market price, in these experiments, converges rapidly to
homogeneous rational expectations value adjusted for risk, even though the agents start with non rational
expectations. In other words, homogeneous rational expectations are an attractor for a market with
endogenous, inductive expectations.10 This is not surprising. If some agents forecast differently than the
h.r.e.e. value, then the fact that most other agents are using something close to the h.r.e.e. value, will return

a market-clearing price that corrects these deviant expectations. There is a natural, if weak, attraction to

9 At the time of writing, we have discovered that the two regimes emerge, and the results are materially the
same, if we vary only the rate of invocation of the genetic algorithm.
10 within a simpler model, Blume and Easley (1982) prove analytically the evolutionary stability of r.e.e.
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h.r.e.e. The equilibrium within this regime differs in two ways from the standard, theoretical, rational-
expectations equilibrium. First, the equilibrium is neither assumed nor arrived at by deductive means. Our
agents instead arrive inductively at a homogeneity that overlaps that of the homogeneous, theoretical
rational expectations. Second, the equilibrium is a stochastic one. Agents continually explore aternatives,
albeit at low rates. This testing of aternative explorations, small asit is, induces some “thermal noise” into
the system. As we would expect, in this regime, agents' holdings remain highly homogeneous, trading
volume remains low (reflecting only variations in forecasts due to mutation and recombination) and
bubbles, crashes, and technical trading do not emerge. We can say that in this regime the efficient-market

theory and its implications are upheld.

The Complex or Rich Psychological Regime. We now alow amore reaistic level of exploration in belief
space. In these experiments, as we see in Fig. 1, the price series still appears to be nearly identical to the
price in the rational-expectations regime. (It is lower because of risk attributable to the higher variance

caused by increased exploration.)
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Figs 1aand 1b. Rational -expectations price vs. price in the rich psychologica regime.

The two price series are generated on the same random dividend series. The upper is the
homogeneous r.e.e. price, the lower is the price in the complex regime. The higher variance in the
latter case causes the lower price through risk aversion.

On closer inspection of the results, however, we find that complex patterns have formed in the collection of
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beliefs, and that the market displays characteristics that differ materially from those in the rational
expectations regime. For example, when we magnify the difference between the two price series, we see
systematic evidence of temporary price bubbles and crashes (Fig. 2). We call this new set of market

behaviors the rich-psychological, or complex, regime.
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Figs 2. Deviations of the price series in the complex regime from fundamental value.

The bottom graph shows the difference between the two price series in Fig 1. (with the
complex series rescaled to match the r.e.e. one and the difference between the two
doubled for ease of observation). The upper seriesisthe h.r.e.e. price

This appearance of bubbles and crashes suggests that technical trading, in the form of buying or
selling into trends, has emerged in the market. We can check this rigorously by examining the information
the agents condition their forecasts upon. Figure 3 shows the number of technical trading bits that are used
(are1’sor 0's) in the population of predictors asit evolves over time. In both sets of experiments, technical
trading bits are initially seeded randomly in the predictor population. In the rational -expectations regime,
however, technical trading bits provide no useful information and fall off as useless predictors are
discarded. But in the complex regime, they bootstrap in the population, reaching a steady-state value by

150,000 periods. Technical trading, once it emerges, remains. 11

11 When we run these experiments informally to 1,000,000 periods, we see no signs that technical bits
disappear.
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Figure 3. Number of technical-trading bits that become set as the market evolves, (median over 25
experiments in the two regimes).

Price statistics in the complex regime differ from those in the rational expectations regime, mainly in
that kurtosisis evident in the complex case (Table 1) and that volume of shares traded (per 10,000 periods)
is about 300% larger in the complex case, reflecting the degree to which the agents remain heterogeneous
in their expectations as the market evolves. We note that fat tails and high volume are also characteristic of

price datafrom actual financial markets.

Mean Std. Dev. Skewness Kurtosis Vol. traded
R.e.e. Regime 0.000 2.1002 0.0131 0.0131 2,460.9
Complex Regime 0.000 2.1007 0.0204 0.3429 7,783.8

Table 1. Returns and volume statistics (medians) in the two regimes collected for 25 experiments after
250,000 periods.

How does technical trading emerge in psychologically-rich or complex regime? In this regime the
“temperature” of exploration is high enough to offset to some degree expectations' natural attraction to the
r.e.e. And so, subsets of non-r.e.e. beliefs need not disappear rapidly. Instead they can become mutually

reinforcing. Suppose, for example, predictors appear early on that by chance condition an upward price
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level).22 It also shows persistence in trading volume, Fig. 5., aswell as significant cross-correlation between
trading volume and volatility, Fig. 6. The figures include corresponding correlations for the often-used
market standard, IBM stock. (Note that because our time period and actual market days do not necessarily
match, we should expect no exact overlap. But qualitatively, persistence in our market and IBM’s is

similar.) These correlations are not explained by the standard model, where theoretically they are zero.
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Fig. 4. Autocorrelation of volatility in rational-expectations and complex regimes, and in IBM daily returns
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Fig. 5. Autocorrelation of trading volume in the rational -expectations and complex regimes, and in IBM
daily returns

12 Autocorrelated volatility is often fitted with a Generalized Autoregressive Conditional Heteroscedastic
time series. Hence the GARCH label. See Bollerslev et al. 1990, and Goodhart and O’ Hara, 1995.
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Figure 6. Crosscorrelation of trading volume with volatility, in the rational-expectations and complex
regimes, and in IBM daily returns

Why financial markets—and our inductive market—show these empirical “signatures’ remains an open
guestion. We conjecture a simple evolutionary explanation. Both in real markets and in our artificial
market, agents are constantly exploring and testing new expectations. Once in a while, randomly, more
successful expectations will be discovered. Such expectations will change the market, and trigger further
changes in expectations, so that small and large “avalanches’ of change will cascade through the system.
(Of course, on this very short time-lag scale, these avalanches occur not through the genetic algorithm but
by agents changing their active predictors.) Changes then manifest in the form of increased volatility and
increased volume. One way to test this conjecture is to see whether autocorrelations increase as the
predictor accuracy-updating parameter 6 in (7) in Appendix A is increased. The larger 0 is, the faster
individual agents “switch” among their predictors. Thus the more such switches should cascade.
Experiments confirm that autocorrelations indeed increase with 6. Such cascades of switching in time are
absorbed by the market, and die away. Hence our evolutionary market exhibits periods of turbulence

followed by periods of quiescence, as do actual markets.13

6. Discussion

To what extent is the existence of the complex regime an artifact of design assumptions made in our

model? We find experimentally by varying both the model’s parameters and the expectational-learning

13 For adiscussion of volatility clustering in a different model, see Y oussefmir and Huberman, 1995; and
also Grannan and Swindle, 1994,
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mechanism, that the complex regime and the qualitative phenomena associated with it are robust. These are

not an artifact of some deficiency in the model .14

It might be objected that if some agents could discover a superior forecasting means to exploit the
market, this might arbitrage complex patterns away, causing the market again to converge to rational
expectations. We believe not. If a clever meta-expectational model was “out there” that might exploit
others' expectations, such a model would, by aggregation of others' expectations, be a complicated non-
linear function of current market information. To the degree that the piecewise linear form we have
assumed covers the space of nonlinear expectational models conditioned on current market information,
agents would indeed, via the genetic algorithm, pick up on an approximate form of this superior meta-
model. The complex regime owes its existence then not to limitations of forecasting, but rather to the fact
that in our endogenous-expectations model, market information can be used as signals, so that a much
wider space of possibilities is open—in particular, the market can self-organize into mutually supporting
subpopulations of predictors. (In fact, in a simpler, analytical model, with a small number of classes of
trader whose beliefs adapt endogenously, Brock and Hommes (1996) find similar, rich, asset-price
dynamics.) There is no reason these emergent subpopulations should be in stochastic equilibrium. Indeed
agents may mutually adapt their expectations forever, so that the market explores its way through this large
space, and is non-stationary. In some early exploratory experiments, we “froze” successful agents’
expectations, then reinjected these agents with their previously successful expectations much later. The
reintroduced agents proved less successful than average, indicating that the market had evolved and was

non-stationary.

It might be also objected that by our use of condition-bits in the predictors, we have built technical
trading in to our model. And so it is no surprise that it appears in the complex regime. But actualy, only the
possibility of technical trading is built in, not its use. The use of market descriptorsis selected against in the
model. Thus market signals must be of value to be used, and technical trading emerges only because such

market signals induce mutually supporting expectations that condition themselves on these market signals.

If the market has a well-defined psychology in our model, does it also experience “moods’?
Obviously not. But notice we assume that agents entertain more than one market hypothesis. Thus we can
imagine circumstances of a prolonged “bull-market” uptrend to a level well above fundamental value in
which the market state activates predictors that indicate the uptrend will continue, and simultaneously other
predictors that predict a rapid downward correction. Such combinations, which occur easily in both our

market and actual markets, could well be described as “ nervous.”

14 One design choice might make a difference. We have evaluated the usefulness of expectational beliefs
by their accuracy rather than by profit they produce. In practice these alternatives may produce different
outcomes For example, buying into a price rise on the basis of expectations may yield a different result if
validated by profit instead of by accuracy of forecast, when “slippage’ is present, that is, when traders on
the other side of the market are hard to find. We believe, but have not proved, that the two criterialead to
the same qualitative results.
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with random predictors: condition bits are set to 0 or 1 with probability 0.1, otherwise to #. This avoids bias
in choosing predictors at the outset, and allows intelligent behavior to bootstrap itself up as the artificial
agents generate predictive models that perform better. For the bitstrings these procedures are standard
genetic algorithm procedures for mutation and crossover (uniform crossover is used which chooses a bit at
random from each of the two parents). The forecasting parameter vectors are mutated by adding random
variables to each individual component. And they are crossed over component-wise, or by taking linear
combinations of the two vectors, or by selecting one or the other complete vector. Each of these procedures
is performed with equal probability. Cross-over on a predictor is performed with probability 0.3 or 0.1 in
the r.e. and complex regimes, respectively. Individual bits are mutated with probability 0.03. New
predictors are brought into the predictor set with variance set to the average of their parents. If a bit has
been changed, the new predictor’s variance is set to the average of that of all predictors. If this new
variance is lower than the variance of the current default predictor less an absolute deviation, its variance is
set to the median of the predictors’ variance. This procedure gives new predictors a reasonable chance of

becoming used.

Market Clearing. The price is adjusted each period by directly solving (5) and (6) for p, which entails
passing agents forecasting parameters to the clearing equation. In actual markets, of course, the priceis
adjusted by a specialist who may not have access to agents demand functions. But we note that actual
specidists, either from experience or from their “books,” have a keen feel for the demand function in their
markets, and use little inventory to balance day-to-day demand. Alternatively, our market-clearing
mechanism simulates an auction in which the specialist declares different prices and agents continually

resubmit bids until a priceis reached that clears the market.

Calculation of the Homogeneous Rational Expectations Equilibrium. We cal culate the homogeneous r.e.e.
for the case where the market price is alinear function of the dividend p, = fd, + g which corresponds to

the structure of our forecasts. We can then calculate f and g from the market conditions at equilibrium. A

homogenous equilibrium demands that all agents hold 1 share, so that, from (5)
Et(pt+1+dt+1)_(1+r)pt :/\G;Zﬁd (9)

From the dividend process (4) and the linear form for the price, we can calculate U,ZH, = (1+ f)o§

and E( ( Pesr + dt+1) as

E(Prog +diag) = (24 f)[(l_P)a "'Pdt] +9.
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Noting that the right side of (9) is constant, we can then solve for f and g as
f=p/(1+r-p)

g=(1+ f)[(l—p)a—}\ag]/r

Therefore the expression:

A 2
Et(pt+l+dt+1):(1+r)pt +% (10)

is the homogeneousr.e.e. forecast we seek.

Appendix B: The SF | Artificial Stock Market

The Santa Fe Artificial Stock Market has existed since 1989 in various designs (see Palmer et al. 1994
for a description of an earlier version). Since then a number of other artificial markets have appeared: e.g.
Beltratti and Margarita, 1992; Marengo and Tordjman, 1995; Rieck, 1994. The Santa Fe Market is a
computer-based model that can be altered, experimented with, and studied in arigorously controlled way.
Most of the artificial market’s features are malleable and can be changed to carry out different experiments.
Thusthe artificial market is aframework or template that can be specialized to focus on particular questions
of interest in finance: for example, the effects of different agents having access to different information sets
or predictive behaviors; or of a transaction tax on trading volume; or of different market-making

mechanisms.

The framework allows other classes of utility functions, such as constant relative risk aversion. It
allows a specialist or market maker, with temporary imbalances in fulfilled bids and offers, made up by

changes in an inventory held by the specidist. It allows a number of alternative random processes for { di }.

And it allows for the evolutionary selection of agents viawealth.

The market runs on a NeXTStep computational platform, but is currently being ported to the Swarm
platform. For availability of code, and for further information, readers should contact Blake LeBaron or
Richard Palmer.
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